Méthode de Monte-CarloUne méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Intégrale multiplevignette|Fig. 2. Intégrale double comme volume du solide situé entre un domaine du plan xy et la surface image de ce domaine par une fonction. En analyse mathématique, l'intégrale multiple est une forme d'intégrale qui s'applique aux fonctions de plusieurs variables réelles. Les deux principaux outils de calcul sont le changement de variables et le théorème de Fubini. Ce dernier permet de ramener de proche en proche un calcul d'intégrale multiple à des calculs d'intégrales simples, et d'interpréter le « volume » d'un domaine « simple » de dimension n (ou son hypervolume si n > 3) comme l'intégrale d'une fonction de n – 1 variables (Fig.
Interaction de configurationL'interaction de configuration (configuration interaction en anglais - CI) est une méthode post-Hartree-Fock linéaire variationnelle pour la résolution de l'équation de Schrödinger non relativiste dans l'approximation de Born-Oppenheimer pour un système chimique quantique multi-électronique. Deux sens sont liés à l'expression d'« interaction de configuration » dans ce contexte. Mathématiquement, le terme de configuration décrit simplement la combinaison linéaire de déterminants de Slater utilisée pour la fonction d'onde.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Champ multi-configurationnel auto-cohérentLe champ multi-configurationnel auto-cohérent (Multi-configurational self-consistent field - MCSCF) est une méthode de chimie quantique utilisée pour générer qualitativement des états de référence corrects pour des molécules dans les cas où la méthode de Hartree-Fock et la théorie de la fonctionnelle de la densité ne sont pas pertinentes (comme pour les états fondamentaux moléculaires qui sont dégénérés avec des états excités bas ou dans les situations de rupture de liaisons).
Champ de force (chimie)vignette|Un champ de force peut par exemple être utilisé afin de minimiser l'énergie d'étirement de cette molécule d'éthane. Dans le cadre de la mécanique moléculaire, un champ de force est un ensemble de potentiels et de paramètres permettant de décrire la structure de l'énergie potentielle d'un système de particules (typiquement, des atomes, mais non exclusivement). L'usage de l'expression champ de force en chimie et biologie numériques diffère ainsi de celui de la physique, où il indique en général un gradient négatif d'un potentiel scalaire.
Mécanique moléculairevignette|Physique à l'échelle moléculaire La mécanique moléculaire correspond à l'utilisation de la mécanique newtonienne pour modéliser la structure des systèmes moléculaires. L'approche de la mécanique moléculaire est souvent appliquée pour améliorer des structures moléculaires ou des simulations utilisant soit la dynamique moléculaire, soit la méthode de Monte-Carlo. Typiquement, la mécanique moléculaire considère l'ensemble des interactions entre une collection d'atomes sphériques reliés entre eux par des ressorts fictifs qui représentent les liaisons chimiques.
Énergie d'ionisationthumb|right|600px|Graphique des premières énergies d'ionisation en eV, en fonction du numéro atomique. L'énergie d'ionisation augmente graduellement des métaux alcalins jusqu'aux gaz nobles. Et dans une colonne donnée du tableau périodique, l'énergie d'ionisation diminue du premier rang jusqu'au dernier, à cause de la distance croissante du noyau jusqu'à la couche des électrons de valence.