Polarisation (diélectrique)La polarisation (ou plus précisément le vecteur polarisation) est une grandeur physique macroscopique vectorielle utilisée dans l'étude des propriétés des matériaux diélectriques. Elle désigne la densité volumique de moment dipolaire électrostatique. Son unité dans le Système international est le C/m. Ce concept a été introduit par Faraday alors qu'il étudiait le comportement des isolants électriques dans des champs électrostatiques. Dans un diélectrique parfait, il n'existe pas de charges électriques libres.
Conductivité thermiqueLa conductivité thermique (ou conductibilité thermique) d'un matériau est une grandeur physique qui caractérise sa capacité à diffuser la chaleur dans les milieux sans déplacement macroscopique de matière. C'est le rapport de l'énergie thermique (quantité de chaleur) transférée par unité de temps (donc homogène à une puissance, en watts) et de surface au gradient de température. Notée λ (anciennement K voire k), la conductivité thermique intervient notamment dans la loi de Fourier.
Stochastic partial differential equationStochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They have relevance to quantum field theory, statistical mechanics, and spatial modeling. One of the most studied SPDEs is the stochastic heat equation, which may formally be written as where is the Laplacian and denotes space-time white noise.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Équation des ondesL' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Courant de déplacementEn électromagnétisme, le courant de déplacement est un terme introduit par Maxwell pour étendre aux régimes variables dans le temps le théorème d'Ampère valide en magnétostatique. Vers 1865, Maxwell a réalisé une synthèse harmonieuse des diverses lois expérimentales découvertes par ses prédécesseurs (lois de l'électrostatique, du magnétisme, de l'induction...). Mais cette synthèse n'a été possible que parce que Maxwell a su dépasser les travaux de ses devanciers, en introduisant dans une équation un « chaînon manquant », appelé le courant de déplacement, dont la présence assure la cohérence de l'édifice unifié.
Champ électriquethumb|Champ électrique associé à son propagateur qu'est le photon. right|thumb|Michael Faraday introduisit la notion de champ électrique. En physique, le champ électrique est le champ vectoriel créé par des particules électriquement chargées. Plus précisément, des particules chargées modifient les propriétés locales de l'espace, ce que traduit justement la notion de champ. Si une autre charge se trouve dans ce champ, elle subira l'action de la force électrique exercée à distance par la particule : le champ électrique est en quelque sorte le "médiateur" de cette action à distance.