Stochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They have relevance to quantum field theory, statistical mechanics, and spatial modeling. One of the most studied SPDEs is the stochastic heat equation, which may formally be written as where is the Laplacian and denotes space-time white noise. Other examples also include stochastic versions of famous linear equations, such as the wave equation and the Schrödinger equation. One difficulty is their lack of regularity. In one dimensional space, solutions to the stochastic heat equation are only almost 1/2-Hölder continuous in space and 1/4-Hölder continuous in time. For dimensions two and higher, solutions are not even function-valued, but can be made sense of as random distributions. For linear equations, one can usually find a mild solution via semigroup techniques. However, problems start to appear when considering non-linear equations. For example where is a polynomial. In this case it is not even clear how one should make sense of the equation. Such an equation will also not have a function-valued solution in dimension larger than one, and hence no pointwise meaning. It is well known that the space of distributions has no product structure. This is the core problem of such a theory. This leads to the need of some form of renormalization. An early attempt to circumvent such problems for some specific equations was the so called da Prato–Debussche trick which involved studying such non-linear equations as perturbations of linear ones. However, this can only be used in very restrictive settings, as it depends on both the non-linear factor and on the regularity of the driving noise term. In recent years, the field has drastically expanded, and now there exists a large machinery to guarantee local existence for a variety of sub-critical SPDEs.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
ME-331: Solid mechanics
Model the behavior of elastic, viscoelastic, and inelastic solids both in the infinitesimal and finite-deformation regimes.
CH-250: Mathematical methods in chemistry
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
MATH-202(c): Analysis III
The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.
Afficher plus
Publications associées (158)
Concepts associés (1)
Équation différentielle ordinaire
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
MOOCs associés (1)
Warm-up for EPFL
Warmup EPFL est destiné aux nouvelles étudiantes et étudiants de l'EPFL.