OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
ZielA goal or objective is an idea of the future or desired result that a person or a group of people envision, plan and commit to achieve. People endeavour to reach goals within a finite time by setting deadlines. A goal is roughly similar to a purpose or aim, the anticipated result which guides reaction, or an end, which is an object, either a physical object or an abstract object, that has intrinsic value. Goal setting Goal-setting theory was formulated based on empirical research and has been called one of the most important theories in organizational psychology.
Optique non imageantevignette|Four solaire d'Odeillo, France L'optique non imageante, ou optique anidolique, est une branche de l'optique qui cherche à optimiser l'éclairage produit par une source sur une cible sans se préoccuper de former une image de la source. Elle a pour applications principales les panneaux photovoltaïques à concentration et les systèmes d'éclairage. L'optique non imageante a été développée à partir du milieu des années 1960 par trois équipes différentes, en URSS par V. K.
Transformation de MöbiusEn mathématiques, et plus particulièrement en géométrie, les transformations de Möbius sont de manière générale des automorphismes du compactifié d'Alexandrov de noté , définies comme la composée d'un nombre fini d'inversions par rapport à des hyperplans ou des hypersphères.
Fonction harmoniqueEn mathématiques, une fonction harmonique est une fonction qui satisfait l'équation de Laplace. Un problème classique concernant les fonctions harmoniques est le problème de Dirichlet : étant donné une fonction continue définie sur la frontière d'un ouvert, peut-on la prolonger par une fonction qui soit harmonique en tout point de l'ouvert ? L'équation est appelée équation de Laplace. Une fonction harmonique est donc, par définition, une solution de cette équation. Les fonctions constantes sont harmoniques sur .
Goal settingGoal setting involves the development of an action plan designed in order to motivate and guide a person or group toward a goal. Goals are more deliberate than desires and momentary intentions. Therefore, setting goals means that a person has committed thought, emotion, and behavior towards attaining the goal. In doing so, the goal setter has established a desired future state which differs from their current state thus creating a mismatch which in turn spurs future actions.
Liouville's theorem (conformal mappings)In mathematics, Liouville's theorem, proved by Joseph Liouville in 1850, is a rigidity theorem about conformal mappings in Euclidean space. It states that any smooth conformal mapping on a domain of Rn, where n > 2, can be expressed as a composition of translations, similarities, orthogonal transformations and inversions: they are Möbius transformations (in n dimensions). This theorem severely limits the variety of possible conformal mappings in R3 and higher-dimensional spaces.
Transformation canoniqueEn mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).
Transformation conformeEn mathématiques, et plus précisément en géométrie et en analyse complexe, une transformation conforme est une bijection qui conserve localement les angles, c'est-à-dire qui se comporte au voisinage de chaque point où elle est définie presque comme une similitude. Dans le plan, les transformations conformes qui conservent les angles orientés ont une telle utilité qu'il est fréquent qu'elles soient les seules baptisées du terme de conformes. Elles se confondent alors avec les bijections holomorphes.
Système intégrableEn mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.