Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
OubliL’oubli (du latin oblītus, dérivé de ob- liveo, au sens de ) est un état caractérisé par l'apparente absence ou la disparition effective de souvenirs, une défaillance de la mémoire. L'oubli est présent chez Homère. Il est dépeint comme un danger et une opportunité. Lorsque, dans l'Odyssée, Ulysse arrive sur l’île des Lotophages (mangeurs de lotos, le « fruit de miel »), il découvre que cette nourriture provoque l'oubli chez ceux qui la mange, et que cela permet aux aborigènes de l'île de vivre en paix.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Horizon des particulesEn relativité restreinte et en relativité générale, l'horizon des particules à un instant donné est la limite dans l'Univers entre l'ensemble des particules qui ont été observables à un temps antérieur et celles qui ne l'ont pas été. Cet horizon est la limite de l'univers observable. L'horizon des particules est le pendant de l'horizon des évènements, qui détermine la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Univ
Horizon des événementsL'horizon des événements est, en relativité restreinte et en relativité générale, constitué par la limite éventuelle de la région qui peut être influencée dans le futur par un observateur situé en un endroit donné à une époque donnée. Dans le cas d'un trou noir, en particulier, on peut définir son horizon des événements comme une surface qui l'entoure, d'où aucun objet, ni même un rayon de lumière ne peut jamais échapper au champ gravitationnel du trou noir.
Nested intervalsIn mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met: Every interval in the sequence is contained in the previous one ( is always a subset of ). The length of the intervals get arbitrarily small (meaning the length falls below every possible threshold after a certain index ).
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.