Temps d'arrêtvignette|Temps d'impact et temps d'arrêt de trois échantillons de mouvement brownien. En théorie des probabilités, en particulier dans l'étude des processus stochastiques, un temps d'arrêt (également appelé temps d'arrêt optionnel, et correspondant à un temps de Markov ou moment de Markov défini) est une variable aléatoire dont la valeur est interprétée comme le moment auquel le comportement d'un processus stochastique donné présente un certain intérêt.
Segmentation (marketing)vignette|Celle ci parle du tranche d'âge des enfants qui pourront fréquenter les différentes market qui existent La segmentation d'un marché consiste à le découper analytiquement en sous-marchés homogènes. Cette analyse se pratique en particulier mais pas uniquement dans le domaine du marketing. La segmentation dite « de ciblage », ou de détermination des couples produit-marché, vise à qualifier et à quantifier la relation qui peut exister entre le produit et son marché.
Lemme d'ItōLe lemme d'Itō, ou formule d'Itō, est l'un des principaux résultats de la théorie du calcul stochastique, qui permet d'exprimer la différentielle d'une fonction d'un processus stochastique au cours du temps. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS). La formule d'Itō a été démontrée pour la première fois par le mathématicien japonais Kiyoshi Itō dans les années 1940.
Mathématiques financièresLes mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
Marche aléatoireEn mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Étude de marchéUne étude de marché est une activité d'exploitation marketing destinée à analyser, comprendre et mesurer le fonctionnement réel des forces à l'œuvre dans le cadre d'un marché. Il s'agit d'une activité typiquement mise en œuvre dans le cadre de la démarche du marketing management. Concrètement — une fois établi le périmètre à observer — cela recouvre l'étude des comportements, des appréciations, des besoins et des attentes des demandeurs et offreurs présents sur ce marché, ainsi que celles des conditions selon lesquelles ceux-ci agissent (ou non) pour réaliser les échanges correspondants à la satisfaction de leurs buts et intérêts.
Théorème central limitethumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.