Méthode ab initio de chimie quantiqueLes méthodes ab initio de chimie quantique sont des méthodes de chimie numérique basées sur la chimie quantique. La méthode ab initio la plus simple de calcul de structure électronique est le schéma Hartree-Fock (HF), dans laquelle la répulsion coulombienne électron-électron n'est pas spécifiquement prise en compte. Seul son effet moyen est inclus dans le calcul. Lorsque la taille de la base est augmentée, l'énergie et la fonction d'onde tendent vers une limite appelée limite Hartree-Fock.
Ligand pontantUn ligand pontant est un ligand qui se connecte à deux atomes ou plus, généralement des ions métalliques, ce ligand pouvant être atomique ou polyatomique. Virtuellement, tous les complexes organiques sont des ligands pontants, ce terme est donc réservé à des petits ligands tels que les pseudohalogénures ou des ligands spécifiquement conçus pour se lier à deux atomes métalliques. En nomenclature des complexes, lorsqu'un seul atome se ponte à deux atomes métalliques, on précède le nom du ligand de la lettre grecque μ (mu), avec un numéro en exposant décrivant le nombre d'atomes métalliques pontés au ligand.
Eau de cristallisationEn cristallographie, l'eau de cristallisation est de l'eau présente dans les cristaux. C'est le total de la masse en eau retenue par certains sels, à une température donnée et est principalement présente dans un ratio défini (stœchiométrique). L'eau de cristallisation est nécessaire au maintien des propriétés cristallines mais peut être enlevée si l'on applique au cristal une chaleur suffisante. Couramment, le terme « eau de cristallisation » réfère en fait à l'eau présente dans la structure cristalline d'un complexe métallique, mais qui n'est pas liée directement à l'ion métallique.
Interaction de configurationL'interaction de configuration (configuration interaction en anglais - CI) est une méthode post-Hartree-Fock linéaire variationnelle pour la résolution de l'équation de Schrödinger non relativiste dans l'approximation de Born-Oppenheimer pour un système chimique quantique multi-électronique. Deux sens sont liés à l'expression d'« interaction de configuration » dans ce contexte. Mathématiquement, le terme de configuration décrit simplement la combinaison linéaire de déterminants de Slater utilisée pour la fonction d'onde.
Orbitale atomiqueredresse=1.5|vignette|Représentation des nuages de probabilité de présence de l'électron (en haut) et des isosurfaces à 90 % (en bas) pour les orbitales 1s, 2s et 2p. Dans le cas des orbitales 2p ( ), les trois isosurfaces 2p, 2p et 2p représentées correspondent à , et . Les couleurs indiquent la phase de la fonction d'onde : positive en rouge, négative en bleu. En mécanique quantique, une orbitale atomique est une fonction mathématique qui décrit le comportement ondulatoire d'un électron ou d'une paire d'électrons dans un atome.
Constante physiquevignette|Dépendances des constantes définissant les unités du SI depuis 2019. Ici, a → b signifie que a est utilisé pour définir b. En science, une constante physique est une quantité physique dont la valeur numérique est fixe. Contrairement à une constante mathématique, elle implique directement une grandeur physiquement mesurable. Les valeurs listées ci-dessous sont des valeurs dont on a remarqué qu'elles semblaient constantes et indépendantes de tous paramètres utilisés, et que la théorie suppose donc réellement constantes.
Chimie quantiqueLa chimie quantique est une branche de la chimie théorique qui applique la mécanique quantique aux systèmes moléculaires pour étudier les processus et les propriétés chimiques. Le comportement électronique et nucléaire des molécules étant responsable des propriétés chimiques, il ne peut être décrit adéquatement qu'à partir de l'équation du mouvement quantique (équation de Schrödinger) et des autres postulats fondamentaux de la mécanique quantique. Cette nécessité a motivé le développement de concepts (notamment orbitale moléculaire.
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
Configuration électroniqueredresse=1.6|vignette|Planche synthétisant la règle de Klechkowski (en haut à gauche) de remplissage des sous-couches électroniques ; en haut la géométrie des quatre types d'orbitales atomiques ; au centre la géométrie de quelques orbitales moléculaires ; en bas le nombre maximum d'électrons pouvant occuper les atomiques connues à l'état fondamental.
Angular momentum couplingIn quantum mechanics, the procedure of constructing eigenstates of total angular momentum out of eigenstates of separate angular momenta is called angular momentum coupling. For instance, the orbit and spin of a single particle can interact through spin–orbit interaction, in which case the complete physical picture must include spin–orbit coupling. Or two charged particles, each with a well-defined angular momentum, may interact by Coulomb forces, in which case coupling of the two one-particle angular momenta to a total angular momentum is a useful step in the solution of the two-particle Schrödinger equation.