Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Cryptographiethumb|La machine de Lorenz utilisée par les nazis durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre Berlin et les quartiers-généraux des différentes armées. La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés. Elle se distingue de la stéganographie qui fait passer inaperçu un message dans un autre message alors que la cryptographie rend un message supposément inintelligible à autre que qui de droit.
Topologie finaleEn mathématiques et plus précisément en topologie, la topologie finale, sur un ensemble d'arrivée commun à une famille d'applications définies chacune sur un espace topologique, est la topologie la plus fine pour laquelle toutes ces applications sont continues. La notion duale est celle de topologie initiale. Soient X un ensemble, (Y) une famille d'espaces topologiques et pour chaque indice i ∈ I, une application f : Y → X. La topologie finale sur X associée à la famille (f) est la plus fine des topologies sur X pour lesquelles chaque f est continue.
Comparaison de topologiesEn mathématiques, l'ensemble de toutes les topologies possibles sur un ensemble donné possède une structure d'ensemble partiellement ordonné. Cette relation d'ordre permet de comparer les différentes topologies. Soient τ1 et τ2 deux topologies sur un ensemble X. On dit que τ2 est plus fine que τ1 (ou bien que τ1 est moins fine que τ2) et on note τ ⊆ τ si l'application identité idX : (X, τ2) → (X, τ1) est continue. Si de plus τ ≠ τ, on dit que τ2 est strictement plus fine que τ1 (ou bien que τ1 est strictement moins fine que τ2).
Nombre de LiouvilleEn mathématiques, et plus précisément en théorie des nombres, un nombre de Liouville est un nombre réel x ayant la propriété suivante :pour tout entier n, il existe des entiers q > 1 et p tels que 0 < |x – p/q| < 1/q ou, ce qui est équivalent : pour tout entier n et tout réel , il existe des entiers q > 0 et p tels que 0 < |x – p/q| < A/q. Un nombre de Liouville peut ainsi être approché « de manière très fine » par une suite de nombres rationnels.
Polar topologyIn functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.
Dominant-party systemA dominant-party system, or one-party dominant system, is a political occurrence in which a single political party continuously dominates election results over running opposition groups or parties. Any ruling party staying in power for more than one consecutive term may be considered a dominant party (also referred to as a predominant or hegemonic party). Some dominant parties were called the natural governing party, given their length of time in power.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Contrat intelligentLes contrats intelligents (en anglais : smart contracts) sont des protocoles informatiques qui facilitent, vérifient et exécutent la négociation ou l'exécution d'un contrat, ou qui rendent une clause contractuelle inutile (car rattachée au contrat intelligent). Les contrats intelligents ont généralement une interface utilisateur et émulent la logique des clauses contractuelles. Cependant, les contrats intelligents sont du code informatique, et si l'interface utilisateur venait à disparaître, il serait toujours possible d'interagir avec ceux-ci.
Complete topological vector spaceIn functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.