RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Groupe de renormalisationEn physique statistique, le groupe de renormalisation est un ensemble de transformations qui permettent de transformer un hamiltonien en un autre hamiltonien par élimination de degrés de liberté tout en laissant la fonction de partition invariante. Il s'agit plus exactement d'un semi-groupe, les transformations n'étant pas inversibles. Le groupe de renormalisation permet de calculer les exposants critiques d'une transition de phase. Il permet aussi de prédire la transition Berezinsky-Kosterlitz-Thouless.
Asymptotic safety in quantum gravityAsymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.
Gauge fixingIn the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct configuration of the system as an equivalence class of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation, equivalent to a shear along unphysical axes in configuration space.
Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
Propagateur de l'équation de SchrödingerEn physique, un propagateur est une fonction de Green particulière utilisée en électrodynamique quantique, qui peut être interprétée comme l'amplitude de probabilité pour qu'une particule élémentaire se déplace d'un endroit à un autre dans un temps donné. Le terme propagateur a été introduit en physique par Feynman en 1948 pour sa formulation de la mécanique quantique en intégrales de chemin, une nouvelle approche de la quantification centrée sur le Lagrangien, contrairement à la procédure habituelle de quantification canonique fondée sur le hamiltonien.
Modèle sigma non linéaireEn théorie quantique des champs un modèle sigma non linéaire désigne une théorie dans laquelle les champs fondamentaux représentent des coordonnées dans une variété riemannienne appelée espace-cible. Ensemble ils constituent un plongement depuis l'espace sur lequel ils vivent (par exemple l'espace de Minkowski) vers l'espace-cible. Dans le cas le plus simple on considère que l'espace sur lequel vivent les champs de la théorie est l'espace de Minkowki .
Gauge covariant derivativeIn physics, the gauge covariant derivative is a means of expressing how fields vary from place to place, in a way that respects how the coordinate systems used to describe a physical phenomenon can themselves change from place to place. The gauge covariant derivative is used in many areas of physics, including quantum field theory and fluid dynamics and in a very special way general relativity. If a physical theory is independent of the choice of local frames, the group of local frame changes, the gauge transformations, act on the fields in the theory while leaving unchanged the physical content of the theory.
Boucle de WilsonEn théorie de jauge, une boucle de Wilson (nommée d'après Kenneth G. Wilson) est une observable invariante de jauge obtenue à partir de l'holonomie de la connexion de jauge autour d'une boucle donnée. Dans les théories classiques, l'ensemble de toutes les boucles de Wilson contient assez d'information pour reconstruire la connexion de jauge, à une transformation de jauge près.