Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Physique numériqueLa physique numérique (ou parfois physique informatique) est l'étude et l'implémentation d'algorithmes numériques dans le but de résoudre des problèmes physiques pour lesquels une théorie existe déjà. Elle est souvent considérée comme une sous-discipline de la physique théorique mais certains la considèrent comme une branche intermédiaire entre la physique théorique et la physique expérimentale. En général, les physiciens définissent un système et son évolution grâce à des formules mathématiques précises.
UncertaintyUncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.
Moteur à réactionUn moteur à réaction est un moteur destiné à la propulsion de véhicule (majoritairement aérien, mais pas uniquement). Le principe de base repose sur la projection d'un fluide (gaz ou liquide) dans une certaine direction ; par réaction, ce fluide transmet alors une poussée au véhicule dans la direction opposée. Le rapport poids/puissance très favorable de ce type de motorisation lui ouvre de nombreuses applications dans les secteurs aéronautiques (avions à grande vitesse) et spatiaux ainsi que marins (hydrojet).
Compressible flowCompressible flow (or gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density. While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is smaller than 0.3 (since the density change due to velocity is about 5% in that case). The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.
TurboréacteurLe turboréacteur est un système de propulsion qui transforme le potentiel d'énergie chimique contenu dans un carburant, associé à un comburant qu'est l'air ambiant, en énergie cinétique permettant de générer une force de réaction en milieu compressible dans le sens opposé à l'éjection. Ce type de moteur est essentiellement utilisé sur les avions de type commercial ou militaire. La poussée générée résulte de l'accélération d'une certaine quantité d'air entre l'entrée (buse d'entrée d'air) et la sortie (tuyère d'éjection).
Nombre de MachLe nombre de Mach est un nombre sans dimension, noté Ma, qui exprime le rapport de la vitesse d'un objet dans un fluide à la vitesse du son dans ce même fluide. La vitesse du son dans un gaz variant avec sa nature et sa température, le nombre de Mach ne correspond pas à une vitesse fixe, il dépend des conditions locales. Il a été ainsi nommé en l'honneur du physicien et philosophe autrichien Ernst Mach par Jakob Ackeret. Aux températures habituelles et dans l'air, la vitesse du son vaut environ ou .
Comparaison de topologiesEn mathématiques, l'ensemble de toutes les topologies possibles sur un ensemble donné possède une structure d'ensemble partiellement ordonné. Cette relation d'ordre permet de comparer les différentes topologies. Soient τ1 et τ2 deux topologies sur un ensemble X. On dit que τ2 est plus fine que τ1 (ou bien que τ1 est moins fine que τ2) et on note τ ⊆ τ si l'application identité idX : (X, τ2) → (X, τ1) est continue. Si de plus τ ≠ τ, on dit que τ2 est strictement plus fine que τ1 (ou bien que τ1 est strictement moins fine que τ2).
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Compacité (mathématiques)En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le théorème des bornes généralisé ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact.