Turbulencevignette|Léonard de Vinci s'est notamment passionné pour l'étude de la turbulence. La turbulence désigne l'état de l'écoulement d'un fluide, liquide ou gaz, dans lequel la vitesse présente en tout point un caractère tourbillonnaire : tourbillons dont la taille, la localisation et l'orientation varient constamment. Les écoulements turbulents se caractérisent donc par une apparence très désordonnée, un comportement difficilement prévisible et l'existence de nombreuses échelles spatiales et temporelles.
Focalisateur de plasma denseUn focalisateur de plasma dense (en anglais dense plasma focus, abrégé DPF), est un appareil qui, par accélération et compression électromagnétiques, donne naissance à un cordon de plasma à vie courte qui produit, grâce aux températures et densités très élevées qu'il atteint, une abondance de rayonnements multiples. Sa conception, qui date du début des années 1960, est due à la fois à l'Américain J.W. Mather et au Russe N.V. Filippov, qui l'ont inventé parallèlement et indépendamment l'un de l'autre.
Énergie potentielleL'énergie potentielle d'un système physique est l'énergie liée à une interaction, qui a la capacité de se transformer en d'autres formes d'énergie, le plus souvent en énergie cinétique, une énergie de mouvement. La force qui modélise l'interaction est une force conservative c'est-à-dire que son travail ne dépend pas du chemin suivi lors du déplacement, mais uniquement du point de départ et du point d'arrivée : .
Équations de Maxwellvignette|Plaque représentant les équations de Maxwell au pied de la statue en hommage à James Clerk Maxwell d'Edimbourg. Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent, avec l'expression de la force électromagnétique de Lorentz, les postulats de base de l'électromagnétisme. Ces équations traduisent sous forme locale différents théorèmes (Gauss, Ampère, Faraday) qui régissaient l'électromagnétisme avant que Maxwell ne les réunisse sous forme d'équations intégrales.
Quadrivecteur potentielEn physique, le quadrivecteur potentiel ou quadri-potentiel ou encore champ de jauge, noté en général avec indice muet, est un vecteur à quatre composantes défini par où désigne le potentiel scalaire (aussi noté V), c la vitesse de la lumière dans le vide, et le potentiel vecteur qui dépend du choix du système de coordonnées. Par exemple, en coordonnées cartésiennes, ce dernier est représenté par , ce qui rend au total pour le quadri-vecteur . Il est utilisé notamment en relativité restreinte et en mécanique quantique relativiste.
Équationvignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.
Champ magnétique interplanétairevignette|La nappe de courant héliosphérique le long de la spirale de Parker est la forme prise par le champ magnétique solaire dans le milieu interplanétaire. Le champ magnétique interplanétaire (CMI), également connu sous le nom de champ magnétique de l'héliosphère, est le champ magnétique du Soleil porté par le vent solaire à travers les planètes et autres corps du Système solaire, dans le milieu interplanétaire jusqu'au confins de l'héliosphère. Les modélisations actuelles du CMI lui donnent une forme de spirale, nommée spirale de Parker.
Équation de PoissonEn analyse vectorielle, l'équation de Poisson (ainsi nommée en l'honneur du mathématicien et physicien français Siméon Denis Poisson) est l'équation aux dérivées partielles elliptique du second ordre suivante : où est l'opérateur laplacien et est une distribution généralement donnée. Sur un domaine borné de et de frontière régulière, le problème de trouver à partir de et satisfaisant certaines conditions aux limites appropriées est un problème bien posé : la solution existe et est unique.
Crochet de PoissonEn mécanique hamiltonienne, on définit le crochet de Poisson de deux observables et , c'est-à-dire de deux fonctions sur l'espace des phases d'un système physique, par : où les variables, dites canoniques, sont les coordonnées généralisées et les moments conjugués . C'est un cas particulier de crochet de Lie. Avant de continuer, soulignons au passage qu'il existe deux conventions de signes au crochet de Poisson. La définition donnée ci-haut est dans la convention de signe employée par Dirac, Arnold , Goldstein et de Gosson pour n'en citer que quelques-uns.
Mécanique des fluides numériqueLa mécanique des fluides numérique (MFN), plus souvent désignée par le terme anglais computational fluid dynamics (CFD), consiste à étudier les mouvements d'un fluide, ou leurs effets, par la résolution numérique des équations régissant le fluide. En fonction des approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les équations résolues peuvent être les équations d'Euler, les équations de Navier-Stokes, etc.