Fonction de LiapounovUne fonction de Liapounov est une fonction qui permet d'estimer la stabilité d'un point d'équilibre (ou, plus généralement, d'un mouvement, c'est-à-dire d'une solution maximale) d'une équation différentielle. Soit une fonction et un système dynamique, avec un point d'équilibre de ce système, c'est-à-dire que . Par un changement de variable , on peut se ramener au cas où l'origine est un point d'équilibre (). Une fonction est une fonction candidate de Liapounov si pour un certain voisinage de l'origine.
CollisionUne collision est un choc direct entre deux objets. Un tel impact transmet une partie de l'énergie et de l'impulsion de l'un des corps au second. Collision élastique Les collisions élastiques, aussi appelées « chocs durs », se caractérisent par leur absence de perte d'énergie et de déformation. Elles sont impossibles à réaliser sauf au niveau atomique. La plupart du temps, on a donc des collisions quasi élastiques. Collision inélastique Les collisions inélastiques sont les collisions les plus fréquentes et surviennent lorsqu'il y a une perte d'énergie lors de la collision.
Agent économiqueUn agent économique est, en économie, une personne physique ou morale prenant des décisions qui participent à l'activité économique. Il est l'actant économique principal des modèles économiques. Le périmètre pertinent de définition de l'agent économique dépend des conceptions de l'économie : les courants de pensée économiques les définissent de manière différentes, ainsi que la comptabilité nationale. La question de la définition de l'agent économique est au centre des controverses économiques du .
Collision inélastiqueUne collision inélastique est une collision au cours de laquelle l'énergie cinétique des corps qui entrent en collision est totalement ou en partie convertie en énergie interne dans au moins un des corps. Ainsi, l'énergie cinétique n'est pas conservée. La non-conservation de l'énergie cinétique peut dans le cas d'un choc de corps macroscopiques être due à une déformation des deux corps qui se heurtent : la déformation d'une boule de pâte à modeler heurtant une boule de pétanque, par exemple, consomme de l'énergie sous forme de travail.
Dynamique holomorpheLa dynamique holomorphe est un domaine de l'analyse complexe et des systèmes dynamiques s'intéressant principalement à l'étude de l'itération des applications holomorphes. La dynamique holomorphe provient initialement de l'étude de la méthode de Newton faite par le mathématicien allemand Ernst Schröder dans les années 1870. Cette méthode, qui revient à itérer une certaine fraction rationnelle particulière, est ensuite généralisée à l'itération de fractions rationnelles quelconques.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Stokes' theoremStokes' theorem, also known as the Kelvin–Stokes theorem after Lord Kelvin and George Stokes, the fundamental theorem for curls or simply the curl theorem, is a theorem in vector calculus on . Given a vector field, the theorem relates the integral of the curl of the vector field over some surface, to the line integral of the vector field around the boundary of the surface. The classical theorem of Stokes can be stated in one sentence: The line integral of a vector field over a loop is equal to the flux of its curl through the enclosed surface.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Choc élastiqueUn choc élastique est un choc entre deux corps qui n’entraîne pas de modification de leur état interne, notamment de leur masse. Dans un tel choc, l'énergie cinétique est conservée. La diffusion des corps, ponctuels ou non, à la suite d'un choc élastique dépend de la loi d'interaction qui intervient au moment du choc et de leur position réciproque pendant ce choc. Dans une diffusion élastique, la notion de section efficace apparaît dans l'étude de la dispersion des particules et les forces qui interviennent entre les particules incidentes peuvent ainsi être étudiées.
Théorème de GreenEn mathématiques, le théorème de Green, ou théorème de Green-Riemann, donne la relation entre une intégrale curviligne le long d'une courbe simple fermée orientée C par morceaux et l'intégrale double sur la région du plan délimitée par cette courbe. Ce théorème, nommé d'après George Green et Bernhard Riemann, est un cas particulier du théorème de Stokes. thumb|upright=0.9|Domaine délimité par une courbe régulière par morceaux. Vu comme cas particulier du théorème de Stokes, le théorème s'écrit sous la forme suivante, en notant ∂D la courbe C et ω la forme différentielle.