Distance d'un point à un planvignette|upright=2|La distance du point A au plan P est AH. Cette distance est inférieure à AM et AM' Dans l'espace euclidien, la distance d'un point à un plan est la plus courte distance séparant ce point et un point du plan. Le théorème de Pythagore permet d'affirmer que la distance du point A au plan (P) correspond à la distance séparant A de son projeté orthogonal H sur le plan (P). Si l'espace est muni d'un repère orthonormal, les points peuvent être définis à l'aide de leurs coordonnées dites cartésiennes.
Extension de groupesEn mathématiques, plus précisément en théorie des groupes, une extension de groupes est une manière de décrire un groupe en termes de deux groupes « plus petits ». Plus précisément, une extension d'un groupe Q par un groupe N est un groupe G qui s'insère dans une suite exacte courte Autrement dit : G est une extension de Q par N si (à isomorphismes près) N est un sous-groupe normal de G et Q est le groupe quotient G/N. L'extension est dite centrale si N est inclus dans le centre de G.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Degree of a field extensionIn mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Distance geometryDistance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. More abstractly, it is the study of semimetric spaces and the isometric transformations between them. In this view, it can be considered as a subject within general topology. Historically, the first result in distance geometry is Heron's formula in 1st century AD.
Extension séparableEn mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.
Extension radicielleDans la théorie des extensions de corps, à l'opposé des extensions algébriques séparables, il existe les extensions radicielles. C'est un phénomène spécifique à la caractéristique positive et qui apparaît naturellement avec les corps de fonctions en caractéristique positive. Soit une extension de corps de caractéristique . Un élément de est dit radiciel sur s'il existe un entier tel que . Une extension (algébrique) est une extension radicielle si tout élément de est radiciel sur .
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Forbidden graph characterizationIn graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph K_5 and the complete bipartite graph K_3,3.
Cinématique inverseLa cinématique inverse (souvent abrégée IK, de l'anglais inverse kinematics) désigne l'ensemble des méthodes de calcul des positions et rotations d'un modèle articulaire afin d'obtenir une pose désirée. Les méthodes de cinématique inverse sont principalement utilisées en infographie, en robotique, en animation ou encore en chimie. Le terme cinématique inverse renvoie au fait que la résolution des calculs est généralement basée sur les équations cinématiques du modèle articulaire.