Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Série de Fouriervignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
Matrice densitéEn physique quantique, la matrice densité, souvent représentée par , est un objet mathématique introduit par le mathématicien et physicien John von Neumann permettant de décrire l'état d'un système physique. Elle constitue une généralisation de la formulation d'un état physique à l'aide d'un ket , en permettant de décrire des états plus généraux, appelés mélanges statistiques, que la précédente formulation ne permettait pas de décrire.
Modélisation moléculairethumb|Animation d'un modèle compact d'ADN en forme B|327x327px|alt=Modèle de l'ADN en forme B La modélisation moléculaire est un ensemble de techniques pour modéliser ou simuler le comportement de molécules. Elle est utilisée pour reconstruire la structure tridimensionnelle de molécules, en particulier en biologie structurale, à partir de données expérimentales comme la cristallographie aux rayons X. Elle permet aussi de simuler le comportement dynamique des molécules et leur mouvements internes.
Analyse harmonique (mathématiques)thumb|upright=1.2|Analyseur harmonique mécanique de Lord Kelvin datant de 1878. L'analyse harmonique est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier. Les ondes de base s'appellent les harmoniques, d'où le nom de la discipline.
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Mesure spectraleEn mathématiques, plus précisément en analyse fonctionnelle, une mesure spectrale est une application définie sur une tribu à valeurs dans l'espace des projections orthogonales d'un espace hilbertien et vérifiant des axiomes semblables à ceux qui définissent les mesures positives. Les mesures spectrales sont utilisées pour exprimer des résultats en théorie spectrale, tels que le théorème spectral pour les opérateurs auto-adjoints. Les mesures spectrales ont des propriétés similaires aux mesures réelles positives.
Joseph FourierJean Baptiste Joseph Fourier est un mathématicien et physicien français né le à Auxerre et mort le à Paris. Joseph Fourier est connu pour avoir déterminé, par le calcul, la diffusion de la chaleur en utilisant la décomposition d'une fonction périodique en une série trigonométrique, qui sous certaines conditions, converge vers la fonction. Ces séries sont utilisées dans la résolution des équations aux dérivées partielles. Veuf en 1757, son père, qui avait déjà trois enfants, se remarie deux ans plus tard avec Edmée Germaine Lebègue.