Tenseur de RicciDans le cadre de la relativité générale, le champ de gravitation est interprété comme une déformation de l'espace-temps. Celle-ci est exprimée à l'aide du tenseur de Ricci. Le tenseur de Ricci est un champ tensoriel d'ordre 2, obtenu comme la trace du tenseur de courbure complet. On peut le considérer comme le laplacien du tenseur métrique riemannien dans le cas des variétés riemaniennes. Le tenseur de Ricci occupe une place importante notamment dans l'équation d'Einstein, équation principale de la relativité générale.
Courbure de Gaussvignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten.
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
Courbure scalaireEn géométrie riemannienne, la courbure scalaire (ou scalaire de Ricci) est un des outils de mesure de la courbure d'une variété riemannienne. Cet invariant riemannien est une fonction qui affecte à chaque point m de la variété un simple nombre réel noté R(m) ou s(m), portant une information sur la courbure intrinsèque de la variété en ce point. Ainsi, on peut décrire le comportement infinitésimal des boules et des sphères centrées en m à l'aide de la courbure scalaire.
Texture (image de synthèse)Dans le domaine de la , une texture est une image en deux dimensions (2D) que l'on va appliquer sur une surface (2D) ou un volume en trois dimensions (3D) de manière à habiller cette surface ou ce volume. En simplifiant, on peut l'assimiler à un papier peint très plastique et déformable que l'on applique en 3D en spécifiant la transformation géométrique que subit chaque pixel du papier pour s'appliquer sur l'élément 3D. Le pixel ainsi manipulé en 3D est appelé texel.
Ombrage platShading refers to the depiction of depth perception in 3D models (within the field of 3D computer graphics) or illustrations (in visual art) by varying the level of darkness. Shading tries to approximate local behavior of light on the object's surface and is not to be confused with techniques of adding shadows, such as shadow mapping or shadow volumes, which fall under global behavior of light. Shading is used traditionally in drawing for depicting a range of darkness by applying media more densely or with a darker shade for darker areas, and less densely or with a lighter shade for lighter areas.
Non-uniform discrete Fourier transformIn applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations.
Curvature of Riemannian manifoldsIn mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Marching cubesLe marching cubes est un algorithme d'infographie publié à la conférence SIGGRAPH 1987 par Lorensen et Cline. Il permet de créer un objet polygonal à partir d'un champ scalaire en trois dimensions (son unité élémentaire est souvent appelée voxel), en principe créé par approximation d'une isosurface. Il est le pendant 3D de l'algorithme marching squares. Cet algorithme parcourt le champ scalaire, prenant huit points à la fois (définissant ainsi un cube imaginaire), et détermine les polygones à créer (si polygone à créer il y a) pour représenter une partie de l'isosurface contenue dans ce cube.
Volume meshIn 3D computer graphics and modeling, volumetric meshes are a polygonal representation of the interior volume of an object. Unlike polygon meshes, which represent only the surface as polygons, volumetric meshes also discretize the interior structure of the object. One application of volumetric meshes is in finite element analysis, which may use regular or irregular volumetric meshes to compute internal stresses and forces in an object throughout the entire volume of the object. Volume meshes may also be used for portal rendering.