Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Extremum estimatorIn statistics and econometrics, extremum estimators are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a certain objective function, which depends on the data. The general theory of extremum estimators was developed by . An estimator is called an extremum estimator, if there is an objective function such that where Θ is the parameter space. Sometimes a slightly weaker definition is given: where op(1) is the variable converging in probability to zero.
Récupération de donnéesvignette|Un laboratoire de récupération de données La récupération de données (ou restauration de données) est une opération informatique qui consiste à retrouver les données perdues à la suite d'une erreur humaine, une défaillance matérielle, une défaillance logicielle d'un programme ou d'un système d'exploitation, un accident ou au moment opportun d'un test de récupération de données défini dans une procédure de stratégie de sauvegarde et d'archive (également appelé plan de sauvegarde).
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Génie mécaniqueLe génie mécanique (ou l'ingénierie mécanique) désigne l'ensemble des connaissances liées à la , au sens physique (sciences des mouvements) et au sens technique (étude des mécanismes). Ce champ de connaissances va de la conception d'un produit mécanique au recyclage de ce dernier en passant par la fabrication, la maintenance, etc. Données dans l'ordre du cycle de vie d'un produit mécanique. Conception de produit : analyse fonctionnelle, dessin industriel, conception assistée par ordinateur.
Data storageData storage is the recording (storing) of information (data) in a storage medium. Handwriting, phonographic recording, magnetic tape, and optical discs are all examples of storage media. Biological molecules such as RNA and DNA are considered by some as data storage. Recording may be accomplished with virtually any form of energy. Electronic data storage requires electrical power to store and retrieve data. Data storage in a digital, machine-readable medium is sometimes called digital data.
Machineright|thumb|Machine à rouler les cigarettes de James Albert Bonsack (1880) Une machine est un produit fini mécanique capable d'utiliser une source d'énergie communément disponible pour effectuer par elle-même, sous la conduite ou non d'un opérateur, une ou plusieurs tâches spécifiques, en exerçant un travail mécanique sur un outil, la charge à déplacer ou la matière à façonner. Une machine peut être fixe (machine-outil, machine à laver, etc.) ou mobile (locomotive, tondeuse à gazon, machine à écrire, etc.).
Nettoyage de donnéesLe nettoyage de données est l'opération de détection et de correction (ou suppression) d'erreurs présentes sur des données stockées dans des bases de données ou dans des fichiers. Le nettoyage de données est un des problèmes majeurs des entrepôts de données. Les données présentes dans les bases de données peuvent avoir plusieurs types d'erreurs comme des erreurs de frappe, des informations manquantes, des imprécisions etc. La partie impropre de la donnée traitée peut être remplacée, modifiée ou supprimée.
Minimum mean square errorIn statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated.