Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
Espace séparéEn mathématiques, un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome T2 au sein des axiomes de séparation. L'appellation fait référence à Felix Hausdorff, mathématicien allemand et l'un des fondateurs de la topologie, qui avait inclus cette condition dans sa définition originale d'espace topologique.
Natural topologyIn any domain of mathematics, a space has a natural topology if there is a topology on the space which is "best adapted" to its study within the domain in question. In many cases this imprecise definition means little more than the assertion that the topology in question arises naturally or canonically (see mathematical jargon) in the given context. Note that in some cases multiple topologies seem "natural". For example, if Y is a subset of a totally ordered set X, then the induced order topology, i.e.
Espace à base dénombrableEn mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable. Tout espace à base dénombrable est à la fois séparable, à bases dénombrables de voisinages et de Lindelöf (en particulier, pour un espace à base dénombrable, les trois propriétés quasi-compact/dénombrablement compact/séquentiellement compact sont équivalentes).
Distance de HausdorffEn mathématiques, et plus précisément en géométrie, la distance de Hausdorff est un outil topologique qui mesure les dissemblances entre deux sous-ensembles d’un espace métrique sous-jacent. Cette distance apparait dans deux contextes bien différents : dans le domaine du traitement de l'image et en mathématiques. Pour le , elle est un outil aux propriétés multiples, source de nombreux algorithmes. Elle indique si deux formes sont les mêmes et, si elles sont différentes, la distance quantifie ces dissemblances.
Espace σ-compactEn mathématiques, un espace topologique est dit σ-compact (ou localement compact dénombrable à l'infini) s'il est l'union dénombrable de sous-espaces compacts. Un espace est dit σ-localement compact s'il est à la fois σ-compact et localement compact. Tout espace compact est σ-compact, et tout espace σ-compact est de Lindelöf (c'est-à-dire que tout recouvrement ouvert a un sous-recouvrement dénombrable).
List of topologiesThe following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Discrete topology − All subsets are open. Indiscrete topology, chaotic topology, or Trivial topology − Only the empty set and its complement are open.
Topologie quotientEn mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. Beaucoup d'espaces intéressants, le cercle, les tores, le ruban de Möbius, les espaces projectifs sont définis comme des quotients.
Disjoint union (topology)In general topology and related areas of mathematics, the disjoint union (also called the direct sum, free union, free sum, topological sum, or coproduct) of a family of topological spaces is a space formed by equipping the disjoint union of the underlying sets with a natural topology called the disjoint union topology. Roughly speaking, in the disjoint union the given spaces are considered as part of a single new space where each looks as it would alone and they are isolated from each other.
Espace complètement métrisableUn espace complètement métrisable (ou espace métriquement topologiquement complet) est un espace topologique (X, T) pour lequel il existe au moins une distance d sur X telle d induit la topologie T (c'est-à-dire que X est métrisable) et fait de (X, d) un espace métrique complet. Le terme d'espace topologiquement complet est employé par certains auteurs comme synonyme despace complètement métrisable, mais parfois aussi utilisé pour d'autres classes d'espaces topologiques, comme les espaces complètement uniformisables ou les espaces Čech-complets.