Differentiable curveDifferential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Plan projectifEn mathématiques, la notion de plan projectif a deux sens distincts, suivant que l'approche est algébrique ou par les axiomes d'incidence entre pointe et droites, l'approche axiomatique donnant une notion qui s'avère un peu plus générale que l'approche algébrique. Un plan projectif en géométrie algébrique est une variété particulière : l'espace projectif de dimension 2. On peut associer un plan projectif à tout corps commutatif (corps des réels, corps des complexes, corps finis) ou non commutatif (quaternions.
Transmission parallèleLa transmission parallèle consiste à transmettre des éléments d'information sur plusieurs voies simultanément. Elle s'oppose à la transmission série où les informations doivent être découpées avant d'être envoyées (car il y a moins de lignes de communication disponibles que de bits nécessaires pour transmettre l'information). À grande distance, la multiplicité des conducteurs nécessaires pour la transmission parallèle lui a fait préférer dès l'origine la transmission série dans des télécommunications.
Port parallèleLe port parallèle est un connecteur situé à l'arrière des ordinateurs compatibles PC reposant sur la communication parallèle. Il est associé à l'interface parallèle Centronics. La communication parallèle a été conçue pour une imprimante imprimant du texte, caractère par caractère. Les imprimantes graphiques (pouvant imprimer des images) ont ensuite continué à utiliser ce système pour profiter de l'interface parallèle normalisée. Le port parallèle est à l'origine unidirectionnel.
Distance (géographie)La distance en géographie peut être entendue comme la longueur de l'intervalle ou du trajet séparant deux ou plusieurs lieux. La distance est la marque d'une séparation, son franchissement nécessite obligatoirement une dépense énergétique. Les formules contenues dans cet article permettent de calculer les distances entre des points qui sont définis par leurs coordonnées géographiques à l'aide de la notion de latitude et de longitude. Calculer la distance entre deux coordonnées géographiques nécessite un certain degré d'abstraction.
CoplanaireÉtymologiquement, plusieurs objets sont coplanaires si et seulement s'ils sont situés dans un même plan. En géométrie, on parle de points coplanaires, de vecteurs coplanaires et de droites coplanaires. Des points coplanaires sont des points situés dans un même plan. Deux points ou trois points sont toujours coplanaires. En effet, deux points sont toujours sur une même droite qui peut être plongée dans un plan. De même, trois points, ou bien sont alignés et la droite peut être plongée dans un plan, ou bien définissent un plan.
Deux dimensionsDeux dimensions, bidimensionnel ou 2D sont des expressions qui caractérisent un espace conçu à partir de deux dimensions. Ce type de plan peut représenter des corps en une ou deux dimensions. Un espace en deux dimensions est un plan. Un objet en deux dimensions a donc une superficie mais pas de volume. En mathématiques, le plan composé de deux dimensions est à distinguer de l’espace, qui est lui repéré par trois axes orthogonaux.
Plan complexeEn mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. On associe en général le plan complexe à un repère orthonormé direct.
Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.