Matrice modaleEn algèbre linéaire, la matrice modale est utilisée dans le processus de diagonalisation impliquant des valeurs propres et des vecteurs propres. Plus précisément la matrice modale pour la matrice est la matrice n × n formée avec les vecteurs propres de sous forme de colonnes. Elle est utilisée en diagonalisation où est une matrice diagonale n × n avec les valeurs propres de sur la diagonale principale de et des zéros ailleurs. La matrice s'appelle la matrice spectrale pour .
Base canoniqueEn mathématiques, plus précisément en algèbre linéaire, certains espaces vectoriels possèdent une base qualifiée de canonique ; il s'agit d'une base qui se présente de manière naturelle d'après la manière dont l'espace vectoriel est présenté. C'est ainsi que l'on parle de la base canonique de R, de la base canonique de l'espace vectoriel des matrices ou de celui des polynômes. En revanche sur un espace vectoriel quelconque, la notion n'a pas de sens : il n'y a pas de choix de base privilégiée.
Équations de Navier-Stokesthumb|Léonard de Vinci : écoulement dans une fontaine En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non linéaires qui décrivent le mouvement des fluides newtoniens (donc des gaz et de la majeure partie des liquides). La résolution de ces équations modélisant un fluide comme un milieu continu à une seule phase est difficile, et l'existence mathématique de solutions des équations de Navier-Stokes n'est pas démontrée.
Base orthonorméeEn géométrie vectorielle, une base orthonormale ou base orthonormée (BON) d'un espace euclidien ou hermitien est une base de cet espace vectoriel constituée de vecteurs de norme 1 et orthogonaux deux à deux. Dans une telle base, les coordonnées d'un vecteur quelconque de l'espace sont égales aux produits scalaires respectifs de ce vecteur par chacun des vecteurs de base, et le produit scalaire de deux vecteurs quelconques a une expression canonique en fonction de leurs coordonnées.
Base de SchauderEn analyse fonctionnelle (mathématique), la notion de base de Schauder est une généralisation de celle de base (algébrique). La différence vient du fait que dans une base algébrique, on considère des combinaisons linéaires finies d'éléments, alors que pour des bases de Schauder elles peuvent être infinies. Ceci en fait un outil plus adapté pour l'analyse des espaces vectoriels topologiques de dimension infinie, en particulier les espaces de Banach. Les bases de Schauder furent introduites en 1927 par Juliusz Schauder, qui explicita un exemple pour C([0, 1]).
Protéine du rétinoblastomeLa protéine du rétinoblastome (pRB) est une protéine de séquestration qui exerce un contrôle négatif du cycle cellulaire. Cette fonction est essentielle dans les organismes pluricellulaires pour éviter la formation de tumeurs malignes qui mettraient en péril l’organisme, ce qui permet de qualifier cette protéine de « suppresseur de tumeur ». Son nom vient de son étroite collaboration dans un cancer ophtalmologique pédiatrique : le rétinoblastome.
Cycle cellulairevignette|335x335px|Cycle cellulaire d'une cellule eucaryote (car présence de la mitose) Le cycle cellulaire est l'ensemble des étapes qui constituent et délimitent la vie d'une cellule. Ce cycle est composé de plusieurs phases de croissance dans lesquelles la cellule grossit et duplique son matériel génétique (interphase) et d'une phase où celle-ci se divise (mitose) pour donner naissance à deux cellules filles identiques (dans le cas de la mitose). Les cellules filles reproduiront ce cycle, et ainsi de suite.
Écoulement de StokesUn écoulement de Stokes (ou écoulement rampant) caractérise un fluide visqueux qui s'écoule lentement en un lieu étroit ou autour d'un petit objet, dont les effets visqueux dominent alors sur les effets inertiels. On parle parfois de fluide de Stokes par opposition à fluide parfait. Il est en effet régi par une version simplifiée de l'équation de Navier-Stokes, léquation de Stokes, dans laquelle les termes inertiels sont absents.
Cell cycle checkpointCell cycle checkpoints are control mechanisms in the eukaryotic cell cycle which ensure its proper progression. Each checkpoint serves as a potential termination point along the cell cycle, during which the conditions of the cell are assessed, with progression through the various phases of the cell cycle occurring only when favorable conditions are met. There are many checkpoints in the cell cycle, but the three major ones are: the G1 checkpoint, also known as the Start or restriction checkpoint or Major Checkpoint; the G2/M checkpoint; and the metaphase-to-anaphase transition, also known as the spindle checkpoint.
Generalized eigenvectorIn linear algebra, a generalized eigenvector of an matrix is a vector which satisfies certain criteria which are more relaxed than those for an (ordinary) eigenvector. Let be an -dimensional vector space and let be the matrix representation of a linear map from to with respect to some ordered basis. There may not always exist a full set of linearly independent eigenvectors of that form a complete basis for . That is, the matrix may not be diagonalizable.