Mesh (objet)Un en ou maillage est un objet tridimensionnel constitué de sommets, d'arêtes et de faces organisés en polygones sous forme de fil de fer dans une infographie tridimensionnelle. Les faces se composent généralement de triangles, de quadrilatères ou d'autres polygones convexes simples, car cela simplifie le rendu. Les faces peuvent être combinées pour former des polygones concaves plus complexes, ou des polygones avec des trous. L'étude des en fait partie importante de l'infographie tridimensionnelle.
Mesh generationMesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI , depending on the complexity of the domain and the type of mesh desired.
Types of meshA mesh is a representation of a larger geometric domain by smaller discrete cells. Meshes are commonly used to compute solutions of partial differential equations and render computer graphics, and to analyze geographical and cartographic data. A mesh partitions space into elements (or cells or zones) over which the equations can be solved, which then approximates the solution over the larger domain. Element boundaries may be constrained to lie on internal or external boundaries within a model.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Primitive (modélisation)vignette|Primitives communes en 2D (triangle, rectangle, ellipse, droite, polygone) Dans le vocabulaire de la 3D, les primitives sont des formes géométriques de base, pouvant être créées sur demande par le logiciel, mathématiquement parfaites car régies par des formules mathématiques (par opposition aux objets dits « maillés »). Les formes pouvant être générées sont les suivantes (liste non exhaustive, différente selon les logiciels) : Sphère Cube Cylindre Plan Pyramide Cône Tore Théière de l'Utah Les primitives existent également en 2D.
Surface de subdivisionDans le domaine de la CAO et des mathématiques, les surfaces de subdivision sont une façon de créer des surfaces lisses développant de plus en plus un maillage linéaire par morceaux. La surface lisse finale, peut être calculée comme la limite du procédé itératif de subdivision de chaque face polygonales en un sous-ensemble de faces approchant mieux la surface lisse finale. Les procédés de subdivision sont par nature des algorithmes récursifs. La méthode débute à partir d'un maillage (ou mesh) donné.
Tessellation (computer graphics)In computer graphics, tessellation is the dividing of datasets of polygons (sometimes called vertex sets) presenting objects in a scene into suitable structures for rendering. Especially for real-time rendering, data is tessellated into triangles, for example in OpenGL 4.0 and Direct3D 11. A key advantage of tessellation for realtime graphics is that it allows detail to be dynamically added and subtracted from a 3D polygon mesh and its silhouette edges based on control parameters (often camera distance).
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.