Échelle synoptiquevignette|Carte météorologique à l'échelle synoptique montrant les systèmes météorologiques en Amérique du Nord. L’échelle synoptique est la dimension des phénomènes météorologiques ou océanographiques qui s'étendent sur une vaste portion de la surface de la planète terre. On dit d'un tel phénomène qu'il est synoptique pour indiquer ainsi sa grande dimension, par convention au-delà de . La large proportion des zones de haute et basse pression atmosphérique sont à cette échelle, ainsi que leurs zones frontales.
Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.
Variété de PoissonEn géométrie, une structure de Poisson sur une variété différentielle est un crochet de Lie (appelé crochet de Poisson dans ce cas) sur l'algèbre des fonctions lisses de à valeurs réelles, vérifiant formule de Leibniz En d'autres termes, une structure de Poisson est structure d'algèbre de Lie sur l'espace vectoriel des fonctions lisses sur de sorte que est un champ de vecteurs pour toute fonction lisse , appelé champ de vecteurs hamiltonien associé à . Soit une variété différentielle.
Groupe affineLes automorphismes d'un espace affine A constituent un groupe appelé groupe affine de A et noté GA(A). En notant E l'espace vectoriel qui dirige A, l'application qui à tout automorphisme u de A fait correspondre l'automorphisme f de E associé à u est un morphisme du groupe affine GA(A) dans le groupe linéaire GL(E). Son noyau forme le groupe des translations. GA(A) est isomorphe au produit semi-direct du groupe additif de E par GL(E). Il est donc engendré par les translations, les transvections et les dilatations.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Matrice symplectiqueEn mathématique, une matrice symplectique est une matrice M de taille 2n par 2n (dont les entrées sont typiquement soit des réels soit des complexes) satisfaisant la condition où MT désigne la matrice transposée de M et J est la matrice par blocs antisymétrique définie par : (In étant la matrice identité n×n). On remarque que le déterminant de J vaut 1 et qu'on a l'identité J = −I2n. Toute matrice symplectique est inversible et son inverse est donnée par : De plus, le produit de deux matrices symplectiques est, à nouveau, une matrice symplectique.
HypersurfaceEn géométrie, une hypersurface est une généralisation du concept d'hyperplan, de courbe plane et de surface. Une hypersurface est une variété de dimension N - 1, qui est intégrée dans un espace de dimension N, généralement un espace euclidien ou un espace affine. Dans une espace de dimension 3, une hypersurface est une surface Dans une espace de dimension 2, une hypersurface est une ligne Une hypersurface est souvent définie par une seule équation du type f(x1,x2,...xN)=0.
Hyperkähler manifoldIn differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).
Hadley cellThe Hadley cell, also known as the Hadley circulation, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward near the tropopause at a height of above the Earth's surface, cooling and descending in the subtropics at around 25 degrees latitude, and then returning equatorward near the surface. It is a thermally-direct circulation within the troposphere that emerges due to differences in insolation and heating between the tropics and the subtropics.
Crochet de PoissonEn mécanique hamiltonienne, on définit le crochet de Poisson de deux observables et , c'est-à-dire de deux fonctions sur l'espace des phases d'un système physique, par : où les variables, dites canoniques, sont les coordonnées généralisées et les moments conjugués . C'est un cas particulier de crochet de Lie. Avant de continuer, soulignons au passage qu'il existe deux conventions de signes au crochet de Poisson. La définition donnée ci-haut est dans la convention de signe employée par Dirac, Arnold , Goldstein et de Gosson pour n'en citer que quelques-uns.