Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
ARMAEn statistique, les modèles ARMA (modèles autorégressifs et moyenne mobile), ou aussi modèle de Box-Jenkins, sont les principaux modèles de séries temporelles. Étant donné une série temporelle , le modèle ARMA est un outil pour comprendre et prédire, éventuellement, les valeurs futures de cette série. Le modèle est composé de deux parties : une part autorégressive (AR) et une part moyenne-mobile (MA). Le modèle est généralement noté ARMA(,), où est l'ordre de la partie AR et l'ordre de la partie MA.
Programme informatiqueUn programme informatique est un ensemble d'instructions et d’opérations destinées à être exécutées par un ordinateur. Un programme source est un code écrit par un informaticien dans un langage de programmation. Il peut être compilé vers une forme binaire ou directement interprété. Un programme binaire décrit les instructions à exécuter par un microprocesseur sous forme numérique. Ces instructions définissent un langage machine.
Base (algèbre linéaire)vignette|Le même vecteur peut être représenté dans deux bases différentes (flèches violettes et rouges). En mathématiques, une base d'un espace vectoriel V est une famille de vecteurs de V linéairement indépendants et dont tout vecteur de V est combinaison linéaire. En d'autres termes, une base de V est une famille libre de vecteurs de V qui engendre V. alt=|vignette|upright=2|. La géométrie plane, celle d'Euclide, peut comporter une approche algébrique, celle de Descartes.
Base orthonorméeEn géométrie vectorielle, une base orthonormale ou base orthonormée (BON) d'un espace euclidien ou hermitien est une base de cet espace vectoriel constituée de vecteurs de norme 1 et orthogonaux deux à deux. Dans une telle base, les coordonnées d'un vecteur quelconque de l'espace sont égales aux produits scalaires respectifs de ce vecteur par chacun des vecteurs de base, et le produit scalaire de deux vecteurs quelconques a une expression canonique en fonction de leurs coordonnées.
Programmation informatiquevignette|Liste d'instructions sur le Commodore 64 La programmation, appelée aussi codage dans le domaine informatique, désigne l'ensemble des activités qui permettent l'écriture des programmes informatiques. C'est une étape importante du développement de logiciels (voire de matériel). L'écriture d'un programme se fait dans un langage de programmation. Un logiciel est un ensemble de programmes (qui peuvent être écrits dans des langages de programmation différents) destiné à la réalisation de certaines tâches par un (ou plusieurs) utilisateurs du logiciel.
Mesure physiqueLa mesure physique est l'action de déterminer la ou les valeurs d'une grandeur (longueur, capacité), par comparaison avec une grandeur constante de même espèce prise comme terme de référence (étalon ou unité). Selon la définition canonique : La mesure physique vise à l'objectivité et à la reproductibilité. La comparaison est numérique ; on exprime une caractéristique bien définie de l'objet par un nombre rationnel multipliant l'unité.
Standard basisIn mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. For example, in the case of the Euclidean plane formed by the pairs (x, y) of real numbers, the standard basis is formed by the vectors Similarly, the standard basis for the three-dimensional space is formed by vectors Here the vector ex points in the x direction, the vector ey points in the y direction, and the vector ez points in the z direction.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.