Fonction booléennevignette|Arbre de décision binaire Une fonction booléenne est une fonction prenant en entrée une liste de bits et donnant en sortie un unique bit. Les fonctions booléennes sont très utilisées en informatique théorique, notamment en théorie de la complexité et en cryptologie (par exemple dans les boîtes-S et les chiffrements par flot -- fonction de filtrage ou de combinaison de registres à décalage à rétroaction linéaire). Une fonction booléenne est une fonction de dans où désigne le corps fini à 2 éléments.
Théorème de la base de HilbertIn mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian. If is a ring, let denote the ring of polynomials in the indeterminate over . Hilbert proved that if is "not too large", in the sense that if is Noetherian, the same must be true for . Formally, Hilbert's Basis Theorem. If is a Noetherian ring, then is a Noetherian ring. Corollary. If is a Noetherian ring, then is a Noetherian ring.
Expression booléenne (programmation informatique)In computer science, a Boolean expression is an expression used in programming languages that produces a Boolean value when evaluated. A Boolean value is either true or false. A Boolean expression may be composed of a combination of the Boolean constants true or false, Boolean-typed variables, Boolean-valued operators, and Boolean-valued functions. Boolean expressions correspond to propositional formulas in logic and are a special case of Boolean circuits.
Graphe distance-unitéEn mathématiques, plus particulièrement en théorie des graphes, un graphe distance-unité est un graphe s'obtenant à partir d'un ensemble de points du plan euclidien en reliant par une arête toutes les paires de points étant à une distance de 1. Les arêtes peuvent se croiser si bien qu'un graphe distance-unité n'est pas nécessairement un graphe planaire. S'il n'y a pas de croisement entre les arêtes, alors le graphe est qualifié de graphe allumette.
Polynôme de TutteLe polynôme de Tutte, aussi appelé polynôme dichromatique ou polynôme de Tutte–Whitney, est un polynôme invariant de graphes dont les valeurs expriment des propriétés d'un graphe. C'est un polynôme en deux variables qui joue un rôle important en théorie des graphes et en combinatoire. Il est défini pour tout graphe non orienté et contient des informations liées à ses propriétés de connexité. L'importance de ce polynôme provient des informations qu'il contient sur le graphe .
Coordonnées homogènesEn mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.
Demi-anneauEn mathématiques, un demi-anneau, ou semi-anneau, est une structure algébrique qui a les propriétés suivantes : constitue un monoïde commutatif ; forme un monoïde ; est distributif par rapport à + ; 0 est absorbant pour le produit, autrement dit: pour tout . Ces propriétés sont proches de celles d'un anneau, la différence étant qu'il n'y a pas nécessairement d'inverses pour l’addition dans un demi-anneau. Un demi-anneau est commutatif quand son produit est commutatif ; il est idempotent quand son addition est idempotente.
Line coordinatesIn geometry, line coordinates are used to specify the position of a line just as point coordinates (or simply coordinates) are used to specify the position of a point. There are several possible ways to specify the position of a line in the plane. A simple way is by the pair (m, b) where the equation of the line is y = mx + b. Here m is the slope and b is the y-intercept. This system specifies coordinates for all lines that are not vertical. However, it is more common and simpler algebraically to use coordinates (l, m) where the equation of the line is lx + my + 1 = 0.
Coordonnées plückeriennesLes coordonnées plückeriennes sont des coordonnées grassmanniennes particulières. Inventées par Julius Plücker, elles ont ensuite été généralisées entre 1832 et 1839 par Hermann Grassmann. On considère la grassmannienne formée par les sous-espaces de dimension d'un espace de dimension , c'est-à-dire la plus simple des grassmanniennes qui ne soit pas un espace projectif. Elle a été identifiée par Plücker comme l'ensemble des droites de l'espace projectif de dimension 3.
Conjecture de HadwigerEn théorie des graphes, la conjecture de Hadwiger est une conjecture très générale sur les problèmes de coloration de graphes. Formulée en 1943 par Hugo Hadwiger, elle énonce que si le graphe complet à k sommets, noté , n'est pas un mineur d'un graphe , alors il est possible de colorer les sommets de avec couleurs. Hadwiger a prouvé les cas dans le même article qui formule la conjecture. Wagner a prouvé en 1937 que le cas est équivalent au théorème des quatre couleurs, et la démonstration en 1976 par Appel et Haken du théorème des quatre couleurs a donc prouvé en même temps la conjecture de Hadwiger pour le cas .