Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Fluid bearingFluid bearings are bearings in which the load is supported by a thin layer of rapidly moving pressurized liquid or gas between the bearing surfaces. Since there is no contact between the moving parts, there is no sliding friction, allowing fluid bearings to have lower friction, wear and vibration than many other types of bearings. Thus, it is possible for some fluid bearings to have near-zero wear if operated correctly. They can be broadly classified into two types: fluid dynamic bearings (also known as hydrodynamic bearings) and hydrostatic bearings.
Méthode des trapèzesEn analyse numérique, la méthode des trapèzes est une méthode pour le calcul numérique d'une intégrale s'appuyant sur l'interpolation linéaire par intervalles. Le principe est d'assimiler la région sous la courbe représentative d'une fonction f définie sur un segment [a , b] à un trapèze et d'en calculer l'aire T : En analyse numérique l'erreur est par convention la différence entre la valeur exacte (limite) et son approximation par un nombre fini d'opérations. ()..
Architecture navalethumb|300px| et plan de forme du même voilier, dessins par Mark Starr (2000) Larchitecture navale est l'art de concevoir des structures navigantes maritimes et fluviales, pouvant se déplacer sur l'eau et sous l'eau, dont principalement tous les types de bateaux et navires. Dans sa conception moderne, l'architecture navale relève de deux grands domaines : l'architecture et l'ingénierie. Elle désigne également le domaine de l'ensemble des connaissances de l'art de la conception par les architectes navals et de la construction dans les chantiers navals de ces moyens de navigation.
Coque (bateau)vignette|262x262px|Coque en bois doublée de cuivre. La coque est le constituant premier d'un bateau : elle forme le flotteur, c'est-à-dire l'élément assurant la flottabilité et l'étanchéité. Un bateau peut comprendre une seule coque (on l'appelle alors monocoque) ou plusieurs (multicoque) : un catamaran comprend deux coques, un trimaran trois, suivent les quadrimarans et les pentamarans. Sa rigidité provient notamment de sa forme courbe, propriété mécanique générale des coques.
Enveloppe (géométrie)En géométrie différentielle, une famille de courbes planes possède fréquemment une courbe enveloppe. Celle-ci admet deux définitions géométriques traditionnelles, presque équivalentes : l'enveloppe est une courbe tangente à chacune des courbes de la famille ; elle est le lieu des points caractéristiques, points d'intersection de deux courbes infiniment proches. De façon plus précise, l'enveloppe possède une définition analytique, c'est l'ensemble des points critiques de l'application de projection associée à la famille de courbes.
Somme de RiemannEn mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales. En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes. Elles peuvent également être utilisées pour définir la notion d'intégration. Leur nom vient du mathématicien allemand Bernhard Riemann.
Infinitesimal rotation matrixAn infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation. While a rotation matrix is an orthogonal matrix representing an element of (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.