Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Antiderivative (complex analysis)In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g. More precisely, given an open set in the complex plane and a function the antiderivative of is a function that satisfies . As such, this concept is the complex-variable version of the antiderivative of a real-valued function. The derivative of a constant function is the zero function. Therefore, any constant function is an antiderivative of the zero function.
Série formelleEn algèbre, les séries formelles sont une généralisation des polynômes autorisant des sommes infinies, de la même façon qu'en analyse, les séries entières généralisent les fonctions polynomiales, à ceci près que dans le cadre algébrique, les problèmes de convergence sont évités par des définitions ad hoc. Ces objets sont utiles pour décrire de façon concise des suites et pour trouver des formules pour des suites définies par récurrence via ce que l'on appelle les séries génératrices. Soit R un anneau commutatif (unifère).
Logarithme d'une matriceEn mathématiques, et plus particulièrement en analyse, un logarithme d'une matrice est une autre matrice telle que son exponentielle soit égale à la matrice initiale. C'est une généralisation de la notion usuelle de logarithme, considéré comme inverse de la fonction exponentielle, mais le logarithme n'existe pas pour toutes les matrices, et n'est pas unique en général. L'étude du logarithme des matrices conduit au développement de la , car les matrices ayant un logarithme appartiennent à un groupe de Lie, et le logarithme est alors l'élément correspondant de l'algèbre de Lie associée.
Théorie algorithmique des nombresLa théorie algorithmique des nombres ou théorie calculatoire des nombres est une branche des mathématiques et de l'informatique qui essaie de fournir des solutions concrètes et efficaces à des problèmes calculatoires rencontrés en théorie des nombres. Par exemple, le théorème fondamental de l'arithmétique, qui affirme que tout nombre entier se décompose de manière unique en produit de nombres premiers, donne lieu à l'étude d'algorithmes de factorisation efficace.
Factorisation de DixonEn arithmétique modulaire, la méthode de factorisation de Dixon (aussi connue comme l'algorithme de Dixon) est un algorithme de décomposition en produit de facteurs premiers à but général. Le crible quadratique est une modification de l'idée de base utilisée dans la méthode de Dixon. L'algorithme a été proposé par John D. Dixon, un mathématicien de l'université Carleton, et publié en 1981. La méthode de Dixon est basée sur la recherche d'une congruence de carrés.
Série de LaurentCet article traite du développement en série de Laurent en analyse complexe. Pour la définition et les propriétés des séries de Laurent formelles en algèbre, veuillez consulter l'article Série formelle. En analyse complexe, la série de Laurent (aussi appelée développement de Laurent) d'une fonction holomorphe f est une manière de représenter f au voisinage d'une singularité, ou plus généralement, autour d'un « trou » de son domaine de définition. On représente f comme somme d'une série de puissances (d'exposants positifs ou négatifs) de la variable complexe.
Algèbre classiqueL'algèbre élémentaire, également appelée algèbre classique est la branche des mathématiques dont l'objet est l'étude des opérations algébriques (addition, multiplication, soustraction, division et extraction de racine) sur les nombres réels ou complexes, et dont l'objectif principal est la résolution d'équations polynomiales. Le qualificatif d'élémentaire (ou classique) est destiné à la différencier de l'algèbre générale (ou moderne), qui étudie les structures algébriques (groupes, corps commutatifs, etc.
Matrice SEn physique, la matrice S ou matrice de diffusion (plus rarement matrice de collision, ou S-matrice) est une construction mathématique qui relie l'état initial et l'état final d'un système physique soumis à un processus de diffusion/collision (). Elle est utilisée en mécanique quantique, en théorie de la diffusion des ondes et des particules, ainsi qu'en théorie quantique des champs. Plus particulièrement, en physique des particules, dans une expérience de collision, des particules sont préparées dans un état initial, puis accélérées afin de subir des collisions à hautes énergies.
Matrice d'incidenceEn mathématiques, et plus particulièrement en théorie des graphes, la matrice d'incidence d'un graphe est une matrice qui décrit le graphe en indiquant quels liens arrivent sur quels sommets. La matrice d'incidence est une matrice n x p, où n est le nombre de sommets du graphe et p est le nombre de liens (arêtes ou arcs). Cette matrice est définie de deux façons différentes selon que le graphe est orienté ou non orienté.