Filtre adaptatifUn filtre adaptatif est un système avec un filtre linéaire dont la fonction de transfert est contrôlée par des paramètres variables et un moyen d'ajuster ces paramètres selon un algorithme d'optimisation. En raison de la complexité des algorithmes d'optimisation, presque tous les filtres adaptatifs sont des filtres numériques. Les filtres adaptatifs sont nécessaires pour certaines applications parce que certains paramètres du traitement souhaité (par exemple, l'emplacement des surfaces réfléchissantes dans un espace réverbérant) ne sont pas connus à l'avance ou changent.
Filtre numériqueEn électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Contrôle actif du bruitvignette|Principe de la réduction active du bruit. Le contrôle actif du bruit ou « antibruit » (en anglais, active noise control abrégé en ANC) est une technique de réduction du bruit par l’utilisation de sources sonores auxiliaires. Le contrôle actif s'oppose à la réduction passive, c'est-à-dire l'isolation phonique par des parois lourdes associées à des matériaux absorbants. Le principe du contrôle actif du bruit consiste à diffuser, par un haut-parleur piloté par un dispositif électronique, une onde sonore qui s'oppose à celle qu'on veut atténuer.
Contrôle du bruitalt=|vignette| Sonomètre Le contrôle du bruit, sa gestion ou atténuation, sont les efforts déployés, en tout domaine, pour diminuer la pollution sonore et limiter l'impact du bruit, tant à l'extérieur qu'à l'intérieur des bâtiments et autres structures habitées. Parmi les principaux domaines concernés par le contrôle, d'atténuation ou de réduction du bruit figurent : le contrôle du bruit des transports (trafic routier, ferroviaire, aérien, des navires dans les ports, etc), la conception architecturale et l'urbanisme (via notamment des codes de zonage) ou encore le contrôle du bruit au travail.
Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
Nonlinear filterIn signal processing, a nonlinear (or non-linear) filter is a filter whose output is not a linear function of its input. That is, if the filter outputs signals R and S for two input signals r and s separately, but does not always output αR + βS when the input is a linear combination αr + βs. Both continuous-domain and discrete-domain filters may be nonlinear. A simple example of the former would be an electrical device whose output voltage R(t) at any moment is the square of the input voltage r(t); or which is the input clipped to a fixed range [a,b], namely R(t) = max(a, min(b, r(t))).
Filter designFilter design is the process of designing a signal processing filter that satisfies a set of requirements, some of which may be conflicting. The purpose is to find a realization of the filter that meets each of the requirements to a sufficient degree to make it useful. The filter design process can be described as an optimization problem where each requirement contributes to an error function that should be minimized. Certain parts of the design process can be automated, but normally an experienced electrical engineer is needed to get a good result.
Filtre de WienerLe filtre de Wiener est un filtre utilisé pour estimer la valeur désirée d'un signal bruité. Le filtre de Wiener minimise l'erreur quadratique moyenne entre le processus aléatoire estimé et le processus souhaité. Norbert Wiener a d'abord proposé le filtre dans les années 1940, puis publié en 1949. Vers la même époque Andreï Kolmogorov travaillait sur des filtres similaires. Le filtre de Wiener a une variété d'applications de traitement du signal, traitement d'image, des systèmes de contrôle et de la communication numérique.
Filtre de Kalman d'ensembleLe filtre de Kalman d'ensemble (EnKF) est une variante du filtre de Kalman plus adaptée aux problèmes de très grande dimension comme les modèles géophysiques. Il a fait son apparition en 1994 dans un article de Geir Evensen. L'idée du filtre de Kalman d'ensemble est de représenter la loi recherchée par un échantillon de la variable d'état, et par suite la matrice de covariance du filtre de Kalman devient une matrice de covariance échantillonnée.