Regression dilutionRegression dilution, also known as regression attenuation, is the biasing of the linear regression slope towards zero (the underestimation of its absolute value), caused by errors in the independent variable. Consider fitting a straight line for the relationship of an outcome variable y to a predictor variable x, and estimating the slope of the line. Statistical variability, measurement error or random noise in the y variable causes uncertainty in the estimated slope, but not bias: on average, the procedure calculates the right slope.
ParameterA parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Heteroskedasticity-consistent standard errorsThe topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.
Erreur de mesurevignette|upright|Mesurage avec une colonne de mesure. Une erreur de mesure, dans le langage courant, est Exemples usuels et fictifs d'après cette définition : L'indication d'une balance de ménage pour une masse de certifiée est de . L'erreur de mesure est de – ; La distance entre deux murs, donnée par un télémètre laser est de , valeur considérée ici comme exacte. La valeur mesurée, au même endroit, avec un mètre à ruban est de . L'erreur de mesure, avec le mètre à ruban, est de ou ; La différence sur 24 heures de temps entre une pendule radio pilotée et une montre bracelet est de .
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Interval estimationIn statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.
Racine carréeEn mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Critère d'information d'AkaikeLe critère d'information d'Akaike, (en anglais Akaike information criterion ou AIC) est une mesure de la qualité d'un modèle statistique proposée par Hirotugu Akaike en 1973. Lorsque l'on estime un modèle statistique, il est possible d'augmenter la vraisemblance du modèle en ajoutant un paramètre. Le critère d'information d'Akaike, tout comme le critère d'information bayésien, permet de pénaliser les modèles en fonction du nombre de paramètres afin de satisfaire le critère de parcimonie.
Propagation des incertitudesUne mesure est toujours entachée d'erreur, dont on estime l'intensité par l'intermédiaire de l'incertitude. Lorsqu'une ou plusieurs mesures sont utilisées pour obtenir la valeur d'une ou de plusieurs autres grandeurs (par l'intermédiaire d'une formule explicite ou d'un algorithme), il faut savoir, non seulement calculer la valeur estimée de cette ou ces grandeurs, mais encore déterminer l'incertitude ou les incertitudes induites sur le ou les résultats du calcul.