Décomposition de SchurEn algèbre linéaire, une décomposition de Schur (nommée après le mathématicien Issai Schur) d'une matrice carrée complexe M est une décomposition de la formeoù U est une matrice unitaire (U*U = I) et A une matrice triangulaire supérieure. On peut écrire la décomposition de Schur en termes d'applications linéaires : Dans le cas où est l'application nulle, l'énoncé est directement vérifié, on peut donc se contenter de traiter le cas où est différente de l'application nulle.
Complément de SchurEn algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p et q×q, avec D inversible. Alors, le complément de Schur du bloc D de la matrice M est constitué par la matrice de dimension p×p suivante : Lorsque B est la transposée de C, la matrice M est symétrique définie positive si et seulement si D et son complément de Schur dans M le sont.
Matrix multiplication algorithmBecause matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Matrice de DiracLes matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
Produit matriciel de Hadamardvignette|Illustration du produit de Hadamard: il s'applique à deux matrices de mêmes dimensions et la matrice en resultant a les mêmes dimensions également. En mathématiques, le produit matriciel de Hadamard, nommé d'après le mathématicien français Jacques Hadamard et parfois désigné produit de Schur, est une opération binaire qui pour deux matrices de mêmes dimensions, associe une autre matrice, de même dimension, et où chaque coefficient est le produit terme à terme des deux matrices.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Transformation de Fourier rapideLa transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Higher-dimensional gamma matricesIn mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions (such as spinors) in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors.
Complexité de la multiplication de matricesEn informatique théorique, la complexité de la multiplication de matrices est le nombre d'opérations requises pour l'opération de produit matriciel. Les algorithmes de multiplication de matrices constituent un sujet central dans les algorithmes théoriques et numériques en algèbre linéaire numérique et en optimisation, donc déterminer la complexité en temps du produit est d'une importance pratique. L'application directe de la définition mathématique de la multiplication de matrices donne un algorithme qui nécessite opérations sur le corps de base pour multiplier deux matrices d'ordre .