Transformation géométriqueUne transformation géométrique est une bijection d'une partie d'un ensemble géométrique dans lui-même. L'étude de la géométrie est en grande partie l'étude de ces transformations. Les transformations géométriques peuvent être classées selon la dimension de l'ensemble géométrique : principalement les transformations planes et les transformations dans l'espace. On peut aussi classer les transformations d'après leurs éléments conservés : Jusqu'à l'avant dernière, chacune de ces classes contient la précédente.
Dynamic spectrum managementLe dynamic spectrum management (DSM) est une technique au stade de recherche visant à améliorer la performance de l'ADSL supportée sur les lignes de cuivre actuelles et déjà déployée aux États-Unis, elle permet d'augmenter les débits des modems ADSL et VDSL opérant sur des paires de cuivre. Cette technique est basée sur la réduction des interférences (diaphonie) entre les différentes paires de cuivres, partageant une même gaine, des différents abonnés. La technique met en œuvre une gestion dynamique du spe
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Optimisation convexevignette|320x320px|Optimisation convexe dans un espace en deux dimensions dans un espace contraint L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive). La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Atténuation du signalvignette|296x296px|L'atténuation du signal en fonction de la fréquence et du temps laisse apparaître un motif nuageux sur un spectrogramme. Le temps est représenté sur l'axe horizontal, la fréquence sur l'axe vertical. L'intensité du signal apparaît en niveaux de gris. Dans les transmissions sans fil, l'atténuation du signal ou évanouissement (fading) est la variation de la puissance du signal causée par plusieurs variables. Ces variables incluent le temps, la position géographique et la fréquence.
Interférence électromagnétiquestart=06:49:05|vignette|300x300px|Enregistrement du débat de la Chambre des représentants des États-Unis le 8 octobre 2002, interrompu et déformé par des interférences électromagnétiques dues à une éruption solaire à environ 16h30. droite|vignette|300x300px| Interférence électromagnétique dans le signal TV analogique Une interférence électromagnétique ( IEM ou EMI ), également appelée interférence radioélectrique (RFI) lorsqu'elles se trouve dans le spectre des radiofréquences, est une perturbation (générée par une source externe) qui affecte un circuit électrique par induction électromagnétique, couplage électrostatique ou conduction.
Radio logicielleUne radio logicielle, en software radio ou software-defined radio (SDR), est un récepteur et éventuellement émetteur radio réalisés principalement par logiciel et dans une moindre mesure par matériel. Dans le sens réception, la partie matérielle consiste soit en la numérisation directe, par un convertisseur analogique-numérique (CAN), des signaux hautes fréquences de la bande à recevoir, soit en leur conversion dans une bande de Fréquence Intermédiaire (FI) avant la numérisation.