Filtre adaptatifUn filtre adaptatif est un système avec un filtre linéaire dont la fonction de transfert est contrôlée par des paramètres variables et un moyen d'ajuster ces paramètres selon un algorithme d'optimisation. En raison de la complexité des algorithmes d'optimisation, presque tous les filtres adaptatifs sont des filtres numériques. Les filtres adaptatifs sont nécessaires pour certaines applications parce que certains paramètres du traitement souhaité (par exemple, l'emplacement des surfaces réfléchissantes dans un espace réverbérant) ne sont pas connus à l'avance ou changent.
Compacité (mathématiques)En topologie, on dit d'un espace qu'il est compact s'il est séparé et qu'il vérifie la propriété de Borel-Lebesgue. La condition de séparation est parfois omise et certains résultats demeurent vrais, comme le théorème des bornes généralisé ou le théorème de Tychonov. La compacité permet de faire passer certaines propriétés du local au global, c'est-à-dire qu'une propriété vraie au voisinage de chaque point devient valable de façon uniforme sur tout le compact.
Espace localement compactEn topologie, un espace localement compact est un espace séparé qui admet des voisinages compacts pour tous ses points. Un tel espace n'est pas nécessairement compact lui-même mais on peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces compacts. Ce sont aussi les espaces qu'on peut « rendre » compacts avec un point grâce à la compactification d'Alexandrov. La compacité est une source très fertile de résultats en topologie mais elle reste une propriété très contraignante.
Espace σ-compactEn mathématiques, un espace topologique est dit σ-compact (ou localement compact dénombrable à l'infini) s'il est l'union dénombrable de sous-espaces compacts. Un espace est dit σ-localement compact s'il est à la fois σ-compact et localement compact. Tout espace compact est σ-compact, et tout espace σ-compact est de Lindelöf (c'est-à-dire que tout recouvrement ouvert a un sous-recouvrement dénombrable).
Analogue filterAnalogue filters are a basic building block of signal processing much used in electronics. Amongst their many applications are the separation of an audio signal before application to bass, mid-range, and tweeter loudspeakers; the combining and later separation of multiple telephone conversations onto a single channel; the selection of a chosen radio station in a radio receiver and rejection of others.
Filtre (électronique)En électronique, un filtre est un circuit linéaire qui transmet une grandeur électrique (courant ou tension) selon sa répartition en fréquences. Le filtre transforme l'histoire de cette grandeur d'entrée (c'est-à-dire ses valeurs successives depuis un certain temps) en une grandeur de sortie. Pour raisonner sur les filtres électroniques, on les considère comme des quadripôles dont les grandeurs électriques d'entrée et de sortie seraient un signal, même quand celles-ci ne servent pas à transmettre de l'information (comme dans le cas des filtres d'alimentation).
Filtre passe-basUn filtre passe-bas est un filtre qui laisse passer les basses fréquences et qui atténue les hautes fréquences, c'est-à-dire les fréquences supérieures à la fréquence de coupure. Il pourrait également être appelé filtre coupe-haut. Le filtre passe-bas est l'inverse du filtre passe-haut et ces deux filtres combinés forment un filtre passe-bande. Le concept de filtre passe-bas est une transformation mathématique appliquée à des données (un signal). L'implémentation d'un filtre passe-bas peut se faire numériquement ou avec des composants électroniques.
Partie relativement compacteEn mathématiques, une partie relativement compacte d'un espace topologique X est un sous-ensemble Y de X inclus dans une partie compacte de X (pour la topologie induite). Rappelons que dans la littérature française, un compact est supposé séparé. Si X est séparé, alors une partie de X est relativement compacte (si et) seulement si son adhérence est compacte. Dans un espace métrisable X, une partie Y est relativement compacte si et seulement si toute suite dans Y possède une sous-suite qui converge dans X.
Filtre de TchebychevLes filtres de Tchebychev sont un type de filtre caractérisé par l'acceptation d'une ondulation, ou bien en bande passante ou bien en bande atténuée. Dans le premier cas, on parle de filtres de Tchebychev de type 1 ou directs, dans le second, de filtres de Tchebychev de type 2 ou inverses. Les filtres qui présentent une ondulation à la fois en bande passante et en bande atténuée sont appelés filtres elliptiques.
Espace dénombrablement compactEn mathématiques, un espace dénombrablement compact est un espace topologique dont tout recouvrement par une famille dénombrable d'ouverts possède un sous-recouvrement fini. La notion de compacité dénombrable entretient des rapports étroits avec celles de quasi-compacité et compacité et celle de compacité séquentielle. Pour un espace métrisable, ces quatre notions sont équivalentes. Soit X un espace topologique (non supposé séparé).