Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Flocon de KochLe flocon de Koch () est l'une des premières courbes fractales à avoir été décrites, bien avant l'invention du terme « fractal(e) » par Benoît Mandelbrot. Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch. thumb|Les 4 premières étapes de la construction. thumb|Les 6 premières courbes successives en animation. On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante : On divise le segment de droite en trois segments de longueurs égales.
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
AutosimilaritéL'autosimilarité est le caractère d'un objet dans lequel on peut trouver des similarités en l'observant à différentes échelles. Une définition simplifiée, faisant appel à l'intuition, pourrait être : un objet autosimilaire est un objet qui conserve sa forme, quelle que soit l'échelle à laquelle on l'observe. La définition mathématique, formelle et rigoureuse, dépend du contexte. L’expression autosimilaire n’est pas encore reconnue par l’Académie française.
Fractal flameFractal flames are a member of the iterated function system class of fractals created by Scott Draves in 1992. Draves' open-source code was later ported into Adobe After Effects graphics software and translated into the Apophysis fractal flame editor. Fractal flames differ from ordinary iterated function systems in three ways: Nonlinear functions are iterated in addition to affine transforms. Log-density display instead of linear or binary (a form of tone mapping) Color by structure (i.e.
Analyse fractalethumb|Ramification fractale d'un arbre L'analyse fractale est la modélisation de données dont la fractalité est la propriété inhérente. La notion-clé est celle de fractal qui remonte à Benoît Mandelbrot qui l'avait introduite comme description mathématique des objets râpeux. L'analyse fractale s'applique aux systèmes physiques qui se distinguent par une similarité de comportements au travers d'une multitude d'échelles ou, dans des cas les plus prononcés, par l'autosimilarité où cette similarité est conservée au travers d'une infinitude d'échelles.
Art fractalvignette|Des figures géométriques arabes tels que celui-ci pourraient avoir préfiguré l'art fractal, comme sur le dôme principal de la mosquée Selimiye à Edirne, en Turquie, avec des motifs autosimilaires. L'art fractal est une forme d'art algorithmique qui consiste à produire des s, des animations et même des musiques à partir d'objets fractals. L'art fractal s'est développé à partir du milieu des années 1980. C'est un genre d'art numérique.
Fractal expressionismFractal expressionism is used to distinguish fractal art generated directly by artists from fractal art generated using mathematics and/or computers. Fractals are patterns that repeat at increasingly fine scales and are prevalent in natural scenery (examples include clouds, rivers, and mountains). Fractal expressionism implies a direct expression of nature's patterns in an art work. The initial studies of fractal expressionism focused on the poured paintings by Jackson Pollock (1912-1956), whose work has traditionally been associated with the abstract expressionist movement.
Finite subdivision ruleIn mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-dimensional shape into smaller and smaller pieces. Subdivision rules in a sense are generalizations of regular geometric fractals. Instead of repeating exactly the same design over and over, they have slight variations in each stage, allowing a richer structure while maintaining the elegant style of fractals. Subdivision rules have been used in architecture, biology, and computer science, as well as in the study of hyperbolic manifolds.