Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Théorie des localesEn mathématiques, la théorie des locales (ou théorie des lieux, ou parfois topologie sans points, en anglais : pointless topology) est une approche de la topologie issue de la théorie des catégories et évitant de mentionner les points ; certains des « espaces » (appelés locales) étudiés par la théorie ne contiennent aucun point au sens usuel.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Théorie des trois phases du traficLa théorie des trois phases du trafic est une théorie alternative de la modélisation du trafic routier mise au point par Boris Kerner entre 1996 et 2002. Elle se concentre principalement sur l'explication physique de la dégradation des conditions de trafic et des embouteillages résultant sur les autoroutes. À la différence des théories classiques basées sur le diagramme fondamental du trafic qui distinguent deux phases ou régimes (trafic fluide et les congestions), la théorie de Kerner propose trois phases.
General topologyIn mathematics, general topology (or point set topology) is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology. The fundamental concepts in point-set topology are continuity, compactness, and connectedness: Continuous functions, intuitively, take nearby points to nearby points.
Gromov's compactness theorem (geometry)In the mathematical field of metric geometry, Mikhael Gromov proved a fundamental compactness theorem for sequences of metric spaces. In the special case of Riemannian manifolds, the key assumption of his compactness theorem is automatically satisfied under an assumption on Ricci curvature. These theorems have been widely used in the fields of geometric group theory and Riemannian geometry. The Gromov–Hausdorff distance defines a notion of distance between any two metric spaces, thereby setting up the concept of a sequence of metric spaces which converges to another metric space.
Péage urbain de Londresthumb|300px|right|Carte de la zone où s'applique le péage urbain de Londres. thumb|300px|right|Le marquage au sol et un panneau marquent l'entrée dans la zone à Old Street. Le péage urbain de Londres (London congestion charge) est un péage urbain, c'est-à-dire un droit de circulation frappant certaines catégories de véhicules automobiles qui entrent dans le centre-ville. Londres n'est pas la première ville à avoir adopté un péage urbain, mais, en 2005, c'est la plus grande ville à utiliser cette technique.
Compacité séquentielleEn mathématiques, un espace séquentiellement compact est un espace topologique dans lequel toute suite possède au moins une sous-suite convergente. La notion de compacité séquentielle entretient des rapports étroits avec celles de quasi-compacité et compacité et celle de compacité dénombrable. Pour un espace métrique (notamment pour un espace vectoriel normé), ces quatre notions sont équivalentes. Intuitivement, un ensemble compact est « petit » et « fermé », au sens où l'on ne peut « s'en échapper ».
Demande agrégéePour la macroéconomie, la demande agrégée (notée ) représente la demande totale de biens et services dans une économie (notée ) pour un temps et un niveau de prix donnés. C'est la quantité de biens et services dans l'économie qui sera achetée à tous les niveaux de prix. Il s'agit donc de la demande pour le produit intérieur brut (PIB) d'un pays lorsque les niveaux d'inventaires sont statiques. Elle est souvent appelée demande effective, quoique ce terme soit parfois considéré comme différent.
Traffic engineering (transportation)Traffic engineering is a branch of civil engineering that uses engineering techniques to achieve the safe and efficient movement of people and goods on roadways. It focuses mainly on research for safe and efficient traffic flow, such as road geometry, sidewalks and crosswalks, cycling infrastructure, traffic signs, road surface markings and traffic lights. Traffic engineering deals with the functional part of transportation system, except the infrastructures provided.