InstabilitéÉtat de déséquilibre dynamique ou thermique de l'atmosphère, qui détermine les mouvements verticaux ascendants.
Géométrisation des 3-variétésEn géométrie, la conjecture de géométrisation de Thurston affirme que les 3-variétés compactes peuvent être décomposées en sous-variétés admettant l'une des huit structures géométriques appelées géométries de Thurston. Formulée par William Thurston en 1976, cette conjecture fut démontrée par Grigori Perelman en 2003. On dit qu'une variété est fermée si elle est compacte et sans bord, et qu'elle est si elle n'est pas somme connexe de variétés qui ne sont pas des sphères.
Hydrodynamic stabilityIn fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century.
Plasma stabilityThe stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
Sliding mode controlIn control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space.
Programme de HamiltonLe programme de Hamilton est un « plan d'attaque », proposé par Richard S. Hamilton, de certains problèmes en topologie des variétés, notamment la célèbre conjecture de Poincaré. Cet article tente de décrire les raisons d'être de ce programme sans entrer dans les détails. Dans son article fondateur de 1982, Three-manifolds with positive Ricci curvature, Richard S. Hamilton introduit le flot de Ricci nommé d'après le mathématicien Gregorio Ricci-Curbastro.
3-variétéEn mathématiques, une 3-variété est une variété de dimension 3, au sens des variétés topologiques, ou différentielles (en dimension 3, ces catégories sont équivalentes). Certains phénomènes sont liés spécifiquement à la dimension 3, si bien qu'en cette dimension, des techniques particulières prévalent, qui ne se généralisent pas aux dimensions supérieures.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Tourbillon de turbulencevignette|upright=0.75|Allées de Karman autour de Madère et des îles Canaries vignette|upright=0.75|Les courants océaniques de Oya shivo et Kuroshio se rencontrent et donnent un tourbillon de turbulence visible par la concentration du phytoplancton dans le vortex. Un tourbillon de turbulence est un élément d'une masse fluide turbulente qui a une certaine individualité et une certaine vie qui lui sont propres. Il peut être causé par un obstacle dans le flot créant un contre-courant, par une différence de densité entre deux sections du fluide ou par la rencontre de deux fluides.