Code linéaireEn mathématiques, plus précisément en théorie des codes, un code linéaire est un code correcteur ayant une certaine propriété de linéarité. Plus précisément, un tel code est structuré comme un sous-espace vectoriel d'un espace vectoriel de dimension finie sur un corps fini. L'espace vectoriel fini utilisé est souvent F2n le terme usuel est alors celui de code linéaire binaire. Il est décrit par trois paramètres [n, k, δ] . n décrit la dimension de l'espace qui le contient. Cette grandeur est appelée longueur du code.
Code cycliqueEn mathématiques et en informatique, un code cyclique est un code correcteur linéaire. Ce type de code possède non seulement la capacité de détecter les erreurs, mais aussi de les corriger sous réserve d'altérations modérées. Les mathématiques sous-jacentes se fondent sur la théorie des corps finis, et en particulier les extensions de Galois ainsi que les polynômes. Les codes cycliques, encore appelés contrôles de redondance cyclique (CRC), correspondent à une large famille de codes, on peut citer par exemple le code de Hamming, les codes BCH ou le code de Reed-Solomon.
Théorie des codesEn théorie de l'information, la théorie des codes traite des codes et de leurs propriétés et de leurs aptitudes à servir sur différents canaux de communication. On distingue deux modèles de communication : avec et sans bruit. Sans bruit, le codage de source suffit à la communication. Avec bruit, la communication est possible avec les codes correcteurs. En définissant l'information de façon mathématique, l'étape fondatrice de la théorie des codes a été franchie par Claude Shannon.
Code de HammingUn code de Hamming est un code correcteur linéaire. Il permet la détection et la correction automatique d'une erreur si elle ne porte que sur une lettre du message. Un code de Hamming est parfait : pour une longueur de code donnée il n'existe pas d'autre code plus compact ayant la même capacité de correction. En ce sens son rendement est maximal. Il existe une famille de codes de Hamming ; le plus célèbre et le plus simple après le code de répétition binaire de dimension trois et de longueur un est sans doute le code binaire de paramètres [7,4,3].
MIMO (télécommunications)Multiple-Input Multiple-Output ou MIMO (« entrées multiples, sorties multiples » en français) est une technique de multiplexage utilisée dans les radars, réseaux sans fil et les réseaux mobiles permettant des transferts de données à plus longue portée et avec un débit plus élevé qu’avec des antennes utilisant la technique SISO (Single-Input Single-Output). Alors que les anciens réseaux Wi-Fi ou les réseaux GSM standards utilisent une seule antenne au niveau de l'émetteur et du récepteur, MIMO utilise plusieurs antennes tant au niveau de l'émetteur (par exemple un routeur) que du récepteur (par exemple un PC portable ou un smartphone).
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Viterbi decoderA Viterbi decoder uses the Viterbi algorithm for decoding a bitstream that has been encoded using a convolutional code or trellis code. There are other algorithms for decoding a convolutionally encoded stream (for example, the Fano algorithm). The Viterbi algorithm is the most resource-consuming, but it does the maximum likelihood decoding. It is most often used for decoding convolutional codes with constraint lengths k≤3, but values up to k=15 are used in practice. Viterbi decoding was developed by Andrew J.
BiomathématiqueLa biomathématique est le domaine d'étude qui réunit la biologie et les mathématiques. De façon précise les biomathématiques sont constituées par l'ensemble des méthodes et techniques mathématiques, numériques et informatiques qui permettent d'étudier et de modéliser les phénomènes et processus biologiques. Il s'agit donc bien d'une science fortement pluridisciplinaire que le mathématicien seul (ou le biologiste seul) est incapable de développer. Pour naître et vivre cette discipline exige des équipes interdisciplinaires mues par le sens du concret.
Spatial resolutionIn physics and geosciences, the term spatial resolution refers to distance between independent measurements, or the physical dimension that represents a pixel of the image. While in some instruments, like cameras and telescopes, spatial resolution is directly connected to angular resolution, other instruments, like synthetic aperture radar or a network of weather stations, produce data whose spatial sampling layout is more related to the Earth's surface, such as in remote sensing and .
Image resolutionImage resolution is the level of detail an holds. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height, also known simply as lines, TV lines, or TVL), or to angular subtense.