Transformation canoniqueEn mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).
Coordonnées canoniquesEn mathématiques et en mécanique classique, les coordonnées canoniques sont des ensembles de coordonnées sur l'espace des phases qui peuvent être utilisées pour décrire un système physique à un moment donné dans le temps. Les coordonnées canoniques sont utilisées dans la formulation hamiltonienne de la mécanique classique. Un concept étroitement lié apparaît également en mécanique quantique ; voir le théorème de Stone-von Neumann et les relations de commutation canoniques pour plus de détails.
Smooth morphismIn algebraic geometry, a morphism between schemes is said to be smooth if (i) it is locally of finite presentation (ii) it is flat, and (iii) for every geometric point the fiber is regular. (iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties. If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Arc de chocvignette|LL Ori, arc de choc dans la nébuleuse d'Orion. En astronomie, un arc de choc (bow shock en anglais) est la zone située entre la magnétosphère et le milieu. Pour les étoiles, ceci est typiquement la frontière entre leur vent stellaire et le milieu interstellaire. Pour une magnétosphère planétaire, l’arc de choc est la frontière à laquelle la vitesse du vent solaire baisse brusquement à la suite de son approche de la magnétopause. L'arc de choc le plus connu et étudié est celui produit par le vent solaire sur la magnétopause de la Terre.
Programme de HamiltonLe programme de Hamilton est un « plan d'attaque », proposé par Richard S. Hamilton, de certains problèmes en topologie des variétés, notamment la célèbre conjecture de Poincaré. Cet article tente de décrire les raisons d'être de ce programme sans entrer dans les détails. Dans son article fondateur de 1982, Three-manifolds with positive Ricci curvature, Richard S. Hamilton introduit le flot de Ricci nommé d'après le mathématicien Gregorio Ricci-Curbastro.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Méthode sans maillageIn the field of numerical analysis, meshfree methods are those that do not require connection between nodes of the simulation domain, i.e. a mesh, but are rather based on interaction of each node with all its neighbors. As a consequence, original extensive properties such as mass or kinetic energy are no longer assigned to mesh elements but rather to the single nodes. Meshfree methods enable the simulation of some otherwise difficult types of problems, at the cost of extra computing time and programming effort.