Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Écart typethumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Accélération (informatique)En architecture informatique, l'accélération (speedup en anglais) est une mesure du gain de performance entre deux systèmes traitant le même problème. Plus techniquement, c'est le gain de vitesse d'exécution d'une tâche exécutée par deux architectures similaires disposant de ressources différentes. La notion d'accélération a été établie par la loi d'Amdahl, qui se penchait principalement sur le calcul parallèle. Cependant, l'accélération peut être utilisée plus généralement pour montrer l'effet sur les performances lors de n'importe quelle amélioration des ressources.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Magnitude apparentevignette|Image de la nébuleuse de la Tarentule prise par le télescope VISTA de l'ESO. La nébuleuse a une magnitude apparente de 8 et est entourée d'objets célestes aux magnitudes diverses. La magnitude apparente est une mesure de l'irradiance d'un objet céleste observé depuis la Terre. Utilisée quasi exclusivement en astronomie, la magnitude correspondait historiquement à un classement des étoiles, les plus brillantes étant de « première magnitude », les deuxièmes et troisièmes magnitudes étant plus faibles, jusqu'à la sixième magnitude, étoiles à peine visibles à l'œil nu.
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Magnitude (astronomie)vignette|Sources lumineuses de différentes magnitudes. En astronomie, la magnitude est une mesure sans unité de la luminosité d'un objet céleste dans une bande de longueurs d'onde définie, souvent dans le spectre visible ou infrarouge. Une détermination imprécise mais systématique de la grandeur des objets est introduite dès le par Hipparque. L'échelle est logarithmique et définie de telle sorte que chaque pas d'une grandeur change la luminosité d'un facteur 2,5.