Schéma (géométrie algébrique)En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Fiber product of schemesIn mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties. Base change is a closely related notion. The of schemes is a broad setting for algebraic geometry.
Formal schemeIn mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.
Group schemeIn mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance.
Hilbert schemeIn algebraic geometry, a branch of mathematics, a Hilbert scheme is a scheme that is the parameter space for the closed subschemes of some projective space (or a more general projective scheme), refining the Chow variety. The Hilbert scheme is a disjoint union of projective subschemes corresponding to Hilbert polynomials. The basic theory of Hilbert schemes was developed by . Hironaka's example shows that non-projective varieties need not have Hilbert schemes.
Sociologie de la connaissance scientifiqueLa sociologie de la connaissance scientifique (SCS) (sociology of scientific knowledge, SSK) est une branche de la sociologie - plus particulièrement de la sociologie de la connaissance - qui s'est développée dans le monde anglo-saxon autour des travaux de David Bloor et Harry Collins durant les années 1970. Ce domaine de recherche est étroitement lié à la sociologie des sciences et aux Science Studies.
Calculatrice mécaniquethumb|Exemple de calculatrice mécanique : la Divisumma 24 d'Olivetti, datant de 1964. Le capot est retiré afin de faire ressortir le mécanisme de la machine. Les moteurs électriques sont à l’arrière Une calculatrice mécanique, appelée selon l'époque machine à calculer ou machine arithmétique, est une machine conçue pour simplifier et fiabiliser des opérations de calculs, et dont le fonctionnement est principalement mécanique. Le nom machine arithmétique fut choisi par Blaise Pascal, et donc utilisé à partir de 1642 et pendant tout le .
Key managementKey management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols. Key management concerns keys at the user level, either between users or systems. This is in contrast to key scheduling, which typically refers to the internal handling of keys within the operation of a cipher.
Calculateur mécaniquevignette| Hamann Manus R. Un calculateur mécanique est construit à partir de composants mécaniques tels que des leviers et des engrenages, plutôt que des composants électroniques. Les exemples les plus courants sont les calculatrices mécaniques qui utilisent la rotation des engrenages pour augmenter les affichages de sortie. Des exemples plus complexes pourraient effectuer la multiplication et la division et même une analyse différentielle. Un modèle vendu dans les années 1960 pouvait calculer les racines carrées.
Infrastructure à clés publiquesthumb|Diagramme de principe d'une autorité de certification, exemple d'infrastructure à clés publiquesCA : autorité de certification ;VA : autorité de validation ;RA : autorité d'enregistrement. Une infrastructure à clés publiques (ICP) ou infrastructure de gestion de clés (IGC) ou encore Public Key Infrastructure (PKI), est un ensemble de composants physiques (des ordinateurs, des équipements cryptographiques logiciels ou matériel type Hardware Security Module (HSM ou boîte noire transactionnelle) ou encore des cartes à puces), de procédures humaines (vérifications, validation) et de logiciels (système et application) destiné à gérer les clés publiques des utilisateurs d'un système.