Partie relativement compacteEn mathématiques, une partie relativement compacte d'un espace topologique X est un sous-ensemble Y de X inclus dans une partie compacte de X (pour la topologie induite). Rappelons que dans la littérature française, un compact est supposé séparé. Si X est séparé, alors une partie de X est relativement compacte (si et) seulement si son adhérence est compacte. Dans un espace métrisable X, une partie Y est relativement compacte si et seulement si toute suite dans Y possède une sous-suite qui converge dans X.
Catégorie groupoïdeEn mathématiques, et plus particulièrement en théorie des catégories et en topologie algébrique, la notion de groupoïde généralise à la fois les notions de groupe, de relation d'équivalence sur un ensemble, et de l'action d'un groupe sur un ensemble. Elle a été initialement développée par Heinrich Brandt en 1927. Les groupoïdes sont souvent utilisés pour représenter certaines informations sur des objets topologiques ou géométriques comme les variétés. Un groupoïde est une petite catégorie dans laquelle tout morphisme est un isomorphisme.
PropriétéLa propriété est la possession d'un bien meuble ou immeuble ou d'une production intellectuelle, reconnue et consacrée par une autorité (divine ou humaine), la société, la loi, la raison générale ou le consentement universel C'est selon Pierre-Joseph Proudhon une usucapion ou une usurpation. La Révolution française a exalté le droit de propriété : inviolable et sacrée, selon l'article 17 de la Déclaration des droits de l'homme et du citoyen de 1789.
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Relation d'équivalenceEn mathématiques, une relation d'équivalence permet, dans un ensemble, de mettre en relation des éléments qui sont similaires par une certaine propriété. On pourra ainsi regrouper ces éléments par « paquets » d'éléments qui se ressemblent, définissant ainsi la notion de classe d'équivalence, pour enfin construire de nouveaux ensembles en « assimilant » les éléments similaires à un seul et même élément. On aboutit alors à la notion d'ensemble quotient. vignette|upright=1.5|Sur cet ensemble de huit exemplaires de livres, la relation « .
Groupe topologiqueEn mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. Les deux axiomes de la définition peuvent être remplacés par un seul : Un morphisme de groupes topologiques est un morphisme de groupes continu.
Locally profinite groupIn mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups.
Revêtement (mathématiques)En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l' de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. Il s'agit donc d'un fibré à fibres discrètes. Les revêtements jouent un rôle pour calculer le groupe fondamental et les groupes d'homotopie d'un espace.
Droit des biensLe droit des biens ou droits réels est branche du droit qui étudie les relations juridiques dont l'origine ou l'objet se rapporte aux biens ou choses. Le droit des biens s'intéresse aux relations entre personnes et biens. Les biens sont un ensemble qui comporte tant des choses matérielles (voiture) que des choses immatérielles (droit d'auteur), tant des choses meubles (action de société) que des choses immeubles (appartement). Les droits réels comprennent un certain nombre de principes fondamentaux issus de leur nature particulière.
MonodromieLa monodromie est l'étude du comportement de certains objets mathématiques « lorsqu'on tourne autour d'une singularité ». Un premier aspect de ce phénomène se rencontre dans le domaine des fonctions complexes admettant plusieurs déterminations dans le plan complexe épointé, comme le logarithme ou les puissances rationnelles : suivre continument une détermination d'une telle fonction le long d'un lacet autour de l'origine conduit après un tour à obtenir une autre détermination.