Contraction tensorielleEn algèbre multilinéaire, la contraction est un procédé de calcul sur les tenseurs faisant intervenir la dualité. En coordonnées elle se représente de façon très simple en utilisant les notations d'Einstein et consiste à faire une somme sur un indice muet. Il est possible de contracter un tenseur unique de rang p en un tenseur de rang p-2, par exemple en calculant la trace d'une matrice. Il est possible également de contracter deux tenseurs, ce qui généralise la notion de produit matriciel.
Catégorie des anneauxEn mathématiques, la catégorie des anneaux est une construction qui rend compte abstraitement des propriétés des anneaux en algèbre. Dans ce contexte, « anneau » signifie toujours anneau unitaire. La catégorie des anneaux, notée Ring, est la catégorie définie ainsi : Les objets sont les anneaux ; Les morphismes sont les morphismes d'anneaux, avec la composition usuelle, et l'identité est la fonction identité sur un anneau donné. La sous-catégorie pleine de Ring, dont les objets sont les anneaux commutatifs, forme la catégorie des anneaux commutatifs, notée CRing.
Tenseur (mathématiques)Les tenseurs sont des objets mathématiques issus de l'algèbre multilinéaire permettant de généraliser les scalaires et les vecteurs. On les rencontre notamment en analyse vectorielle et en géométrie différentielle fréquemment utilisés au sein de champs de tenseurs. Ils sont aussi utilisés en mécanique des milieux continus. Le présent article ne se consacre qu'aux tenseurs dans des espaces vectoriels de dimension finie, bien que des généralisations en dimension infinie et même pour des modules existent.
Distributive latticeIn mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection. Indeed, these lattices of sets describe the scenery completely: every distributive lattice is—up to isomorphism—given as such a lattice of sets. As in the case of arbitrary lattices, one can choose to consider a distributive lattice L either as a structure of order theory or of universal algebra.
Provencevignette|Vue de la Mer Méditerranée depuis Toulon La Provence (prononcé dans une large partie de la France, en français de Provence; Provença/Prouvènço en occitan provençal, de l'ancien provençal Provensa, dérivant du latin provincia, "province") est une région historique et culturelle ainsi qu'un ancien État indépendant puis associé à la France. Elle correspond à l'actuelle région Provence-Alpes-Côte d'Azur et au sud de la région Auvergne-Rhône-Alpes.
Algèbre de BanachEn mathématiques, l'algèbre de Banach est une des structures fondamentales de l'analyse fonctionnelle, portant le nom du mathématicien polonais Stefan Banach (1892-1945). On explicite cette définition : une algèbre de Banach A sur le corps K = R ou C est un espace vectoriel normé complet sur K (on note la norme) muni d'une loi interne notée multiplicativement, telle que quels que soient x, y, z éléments de A et élément de K : (associativité) ; et (bilinéarité) ; (sous-multiplicativité).
Loi commutativeEn mathématiques, et plus précisément en algèbre générale, une loi de composition interne sur un ensemble E est dite commutative si pour tous x et y dans E, En notant , la commutativité se traduit par le diagramme commutatif suivant : Fichier:Commutativité.png Les exemples les plus simples de lois commutatives sont sans doute l'addition et la multiplication des entiers naturels. L'addition et la multiplication des nombres réels et des nombres complexes, l'addition des vecteurs, l'intersection et la réunion des ensembles sont également des lois commutatives.
Structure tertiaireEn biochimie, la structure tertiaire ou tridimensionnelle est le repliement dans l'espace d'une chaîne polypeptidique. Ce repliement donne sa fonctionnalité à la protéine, notamment par la formation du site actif des enzymes. . La structure tertiaire correspond au degré d'organisation supérieur aux hélices α ou aux feuillets β. Ces protéines possèdent des structures secondaires associées le long de la chaîne polypeptidique. Le repliement et la stabilisation de protéines à structure tertiaire dépend de plusieurs types de liaisons faibles qui stabilisent l'édifice moléculaire.
Aix-en-ProvenceAix-en-Provence (en provençal : Ais) est la capitale historique de la Provence. C'est aujourd'hui une commune française du Sud-Est de la France, dans le département des Bouches-du-Rhône, dont elle est sous-préfecture, en région Provence-Alpes-Côte d'Azur. Elle forme avec le pays d'Aix au sein de la Métropole Aix-Marseille Provence. Les habitants d'Aix s'appellent les Aixois en français (en provençal : lei sestian). Fondée en sous le nom d'Aquae Sextiae par la garnison romaine de Caius Sextius Calvinus, Aix devient par la suite la capitale du comté de Provence.
Birkhoff's representation theoremThis is about lattice theory. For other similarly named results, see Birkhoff's theorem (disambiguation). In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. The theorem can be interpreted as providing a one-to-one correspondence between distributive lattices and partial orders, between quasi-ordinal knowledge spaces and preorders, or between finite topological spaces and preorders.