Polytope abstraitEn mathématiques, et plus particulièrement en géométrie discrète, un polytope abstrait est un ensemble partiellement ordonné dont l'ordre reflète les propriétés combinatoires d'un polytope (au sens traditionnel, généralisant les polygones et les polyèdres à un nombre de dimensions quelconque), mais pas les aspects géométriques usuels, tels que les angles ou les distances. On dit qu'un polytope (géométrique) est une réalisation dans un espace à n dimensions (le plus souvent euclidien) du polytope abstrait correspondant.
Polyhedral combinatoricsPolyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas. Mathematicians in this area study the combinatorics of polytopes; for instance, they seek inequalities that describe the relations between the numbers of vertices, edges, and faces of higher dimensions in arbitrary polytopes or in certain important subclasses of polytopes, and study other combinatorial properties of polytopes such as their connectivity and diameter (number of steps needed to reach any vertex from any other vertex).
4-polytopeEn géométrie, un 4-polytope (fréquemment appelé également un polychore) est un polytope de l'espace à quatre dimensions. C'est une figure connexe, composée d'un nombre fini de polytopes de dimension inférieure : des sommets, des arêtes, des faces (qui sont des polygones), et des cellules (qui sont des polyèdres), chaque face appartenant à exactement deux cellules. Le 4-polytope le plus connu est le tesseract (ou hypercube), analogue en 4D du cube. La définition des 4-polytopes varie beaucoup selon les auteurs.
PolytopeUn polytope est un objet mathématique géométrique. Le terme de polytope a été inventé par Alicia Boole Stott, la fille du logicien George Boole. Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l'usage américain ayant tendance à s'imposer, on se retrouve confronté avec des usages contradictoires au sein d'un même pays.
Polytope régulierdroite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.
5-polytopeIn geometry, a five-dimensional polytope (or 5-polytope) is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell. A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope.
Regular 4-polytopeIn mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Semiregular polytopeIn geometry, by Thorold Gosset's definition a semiregular polytope is usually taken to be a polytope that is vertex-transitive and has all its facets being regular polytopes. E.L. Elte compiled a longer list in 1912 as The Semiregular Polytopes of the Hyperspaces which included a wider definition. In three-dimensional space and below, the terms semiregular polytope and uniform polytope have identical meanings, because all uniform polygons must be regular.
MatroïdeEn mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.
Uniform 7-polytopeIn seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets. A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose facets are uniform 6-polytopes. Regular 7-polytopes are represented by the Schläfli symbol {p,q,r,s,t,u} with u {p,q,r,s,t} 6-polytopes facets around each 4-face. There are exactly three such convex regular 7-polytopes: {3,3,3,3,3,3} - 7-simplex {4,3,3,3,3,3} - 7-cube {3,3,3,3,3,4} - 7-orthoplex There are no nonconvex regular 7-polytopes.