Problème de l'arbre de SteinerEn algorithmique, le problème de l'arbre de Steiner est un problème d'optimisation combinatoire. Il porte le nom du mathématicien Jakob Steiner. Ce problème est proche du problème de l'arbre couvrant minimal et a des applications en conception de réseaux, notamment les circuits électroniques et les télécommunications. Il existe plusieurs variantes du problème. Dans un espace métrique, étant donné un ensemble de points P, un arbre pour P est un réseau (c'est-à-dire un ensemble de chemins connectés) tel que tous les points soient reliés, et un arbre est dit de Steiner si la longueur totale du réseau est minimale.
Arbre couvrant de poids minimalthumb|L'arbre couvrant de poids minimal d'un graphe planaire. Chaque arête est identifiée avec son poids qui, ici, est approximativement sa longueur. En théorie des graphes, étant donné un graphe non orienté connexe dont les arêtes sont pondérées, un arbre couvrant de poids minimal (ACM), arbre couvrant minimum ou arbre sous-tendant minimum de ce graphe est un arbre couvrant (sous-ensemble qui est un arbre et qui connecte tous les sommets ensemble) dont la somme des poids des arêtes est minimale (c'est-à-dire de poids inférieur ou égal à celui de tous les autres arbres couvrants du graphe).
Euclidean minimum spanning treeA Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.
Ensemble dominantEn théorie des graphes, un ensemble dominant (ou dominating set en anglais) d'un graphe G = ( S, A ) est un sous-ensemble D de l'ensemble S des sommets tel que tout sommet qui n'appartient pas à D possède au moins une arête d'extrémité un sommet de D. Le problème de l'ensemble dominant est de déterminer, étant donné G et un entier naturel k, si G possède un ensemble dominant d'au plus k sommets. Ce problème est NP-complet.
Maximal independent setIn graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property. For example, in the graph P_3, a path with three vertices a, b, and c, and two edges and , the sets {b} and {a, c} are both maximally independent. The set {a} is independent, but is not maximal independent, because it is a subset of the larger independent set {a, c}.
Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
Coupe (théorie des graphes)En théorie des graphes, une coupe d'un graphe est une partition des sommets en deux sous-ensembles. On appelle aussi coupe l'ensemble des arêtes ayant une extrémité dans chaque sous-ensemble de la partition. Si les arêtes ont un poids, le poids de la coupe est la somme des poids respectifs des arêtes de la coupe. Sinon, c'est le nombre d'arêtes dans la coupe. Cet objet apparaît dans la modélisation de nombreux problèmes concernant les réseaux, où l'on recherche une coupe s-t, c'est-à-dire une coupe séparant deux sommets s et t spécifiés.
Espace completEn mathématiques, un espace métrique complet est un espace métrique dans lequel toute suite de Cauchy converge. La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet. Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite.
Stable (théorie des graphes)thumb|280px|L'ensemble des sommets en bleu dans ce graphe est un stable maximal du graphe. En théorie des graphes, un stable – appelé aussi ensemble indépendant ou independent set en anglais – est un ensemble de sommets deux à deux non adjacents. La taille d'un stable est égale au nombre de sommets qu'il contient. La taille maximum d'un stable d'un graphe, noté I(G), est un invariant du graphe. Il peut être relié à d'autres invariants, par exemple à la taille de l'ensemble dominant maximum, noté dom(G).
Connectivity (graph theory)In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated subgraphs. It is closely related to the theory of network flow problems. The connectivity of a graph is an important measure of its resilience as a network. In an undirected graph G, two vertices u and v are called connected if G contains a path from u to v.