Probabilistic numericsProbabilistic numerics is an active field of study at the intersection of applied mathematics, statistics, and machine learning centering on the concept of uncertainty in computation. In probabilistic numerics, tasks in numerical analysis such as finding numerical solutions for integration, linear algebra, optimization and simulation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Volume englobantDans les domaines de la synthèse d'image et de la géométrie algorithmique, un volume englobant pour un ensemble d'objets est un volume fermé qui contient entièrement l'union de l'ensemble des objets. Les volumes englobants sont utilisés pour améliorer l'efficacité des opérations géométriques en utilisant des volumes simples, qui contiennent des objets beaucoup plus complexes. Normalement, plus un volume est simple plus le test de chevauchement est simple. Les volumes englobants sont le plus souvent utilisés pour accélérer certains types de tests.
Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Objet 3D (format de fichier)OBJ est un format de fichier contenant la description d'une géométrie 3D. Il a été défini par la société Wavefront Technologies dans le cadre du développement de son logiciel d'animation Advanced Visualizer. Ce format de fichier est ouvert et a été adopté par d'autres logiciels 3D (tels que 3D Turbo de iluac software Poser de e-frontier, Maya de Autodesk, Blender, MeshLab, 3D Studio Max, LightWave 3D de Newtek, GLC Player etc) pour des traitements d'import / export de données.
NumératieLa numératie est la capacité à utiliser, à appliquer, à interpréter, à communiquer, à créer et à critiquer des informations et des idées mathématiques de la vie réelle. C’est également la tendance d’un individu à réfléchir mathématiquement dans différentes situations professionnelles, personnelles, sociales et culturelles. Sa visée pragmatique favorise l’indépendance et l’autonomie. La numératie prend forme dans les dimensions cognitive, affective et motivationnelle d’un individu.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
3D scanning3D scanner is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance (e.g. color). The collected data can then be used to construct digital 3D models. A 3D scanner can be based on many different technologies, each with its own limitations, advantages and costs. Many limitations in the kind of objects that can be digitised are still present. For example, optical technology may encounter many difficulties with dark, shiny, reflective or transparent objects.
Méthode du gradient conjuguévignette|Illustration de la méthode du gradient conjugué. En analyse numérique, la méthode du gradient conjugué est un algorithme pour résoudre des systèmes d'équations linéaires dont la matrice est symétrique définie positive. Cette méthode, imaginée en 1950 simultanément par Cornelius Lanczos, Eduard Stiefel et Magnus Hestenes, est une méthode itérative qui converge en un nombre fini d'itérations (au plus égal à la dimension du système linéaire).