Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.
Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Radar imageurvignette|Image prise par un radar à synthèse d'ouverture (RSO), monté sur satellite, de l'île de Tenerife aux îles Canaries, montrant les détails géographiques et la végétation en fausses couleurs Un radar imageur est un radar actif qui émet un faisceau d'impulsions dans le domaine des longueurs d'onde centimétriques ou millimétriques pour représenter en deux ou trois dimensions l'environnement exploré. Cette imagerie a des applications tant civiles que militaires.
Degree of a field extensionIn mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Radar à synthèse d'ouverturethumb|upright=1.5|Image prise par un radar à synthèse d'ouverture, monté sur satellite, de l'île de Tenerife aux îles Canaries, montrant les détails géographiques et la végétation en fausses couleurs. Un radar à synthèse d'ouverture (RSO) est un qui permet d'obtenir des images en deux dimensions ou des reconstitutions tridimensionnelles d'objets visés, tels des paysages. Pour cela, il effectue un traitement des données reçues afin d'améliorer la résolution en azimut. Le traitement effectué permet d'affiner l'ouverture de l'antenne.
Système d'exploitation temps réelUn système d'exploitation temps réel, en anglais RTOS pour real-time operating system (généralement prononcé à l’anglaise, en séparant le R de l’acronyme : Are-toss), est un système d'exploitation pour lequel le temps maximum entre un stimulus d'entrée et une réponse de sortie est précisément déterminé. Ces systèmes d'exploitation multitâches sont destinés à des applications temps réel : systèmes embarqués (thermostats programmables, contrôleurs électroménagers, téléphones mobiles, robots industriels, vaisseaux spatiaux, systèmes de contrôle commande industriel, matériel de recherche scientifique).
Extension de corpsEn mathématiques, plus particulièrement en algèbre, une extension d'un corps commutatif K est un corps L qui contient K comme sous-corps. Par exemple, le corps C des nombres complexes est une extension du corps R des nombres réels, lequel est lui-même une extension du corps Q des nombres rationnels. On note parfois L/K pour indiquer que L est une extension de K. Soit K un corps. Une extension de K est un couple (L, j) où L est un corps et j un morphisme de corps de K dans L (les morphismes de corps étant systématiquement injectifs).
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Régression des moindres carrés partielsLa régression des moindres carrés partiels a été inventée en 1983 par Svante Wold et son père Herman Wold ; on utilise fréquemment l'abréviation anglaise régression PLS ( et/ou ). La régression PLS maximise la variance des prédicteurs (Xi) = X et maximise la corrélation entre X et la variable à expliquer Y. Cet algorithme emprunte sa démarche à la fois à l'analyse en composantes principales (ACP) et à la régression.