Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Paramètre d'échellevignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Article de revueUn article de revue (ou « article de synthèse » ou « article de revue de littérature ») est un type particulier d'article publié dans une revue scientifique dont le principe est de dresser un état des lieux dans un domaine particulier de la recherche et de dégager les directions particulières prises dans ce domaine. Le contenu principal d'un article de revue est une revue de littérature (ou revue de la littérature), c'est-à-dire une méthode de recherche d'information scientifique structurée, réplicable et ciblée sur un sujet de recherche spécifique.
Stress–strain analysisStress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Ensemble finiEn mathématiques, un ensemble fini est un ensemble qui possède un nombre fini d'éléments, c'est-à-dire qu'il est possible de compter ses éléments, le résultat étant un nombre entier. Un ensemble infini est un ensemble qui n'est pas fini. Ainsi l'ensemble des chiffres usuels (en base dix) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} qui possède 10 éléments, est fini. De même l'ensemble des lettres de l'alphabet qui possède 26 éléments. L'ensemble de tous les nombres entiers naturels {0, 1, 2, 3,..., 10,..., 100,...
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Continuous functionIn mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is .