CourbeEn mathématiques, plus précisément en géométrie, une courbe, ou ligne courbe, est un objet du plan ou de l'espace usuel, similaire à une droite mais non nécessairement linéaire. Par exemple, les cercles, les droites, les segments et les lignes polygonales sont des courbes. La notion générale de courbe se décline en plusieurs objets mathématiques ayant des définitions assez proches : arcs paramétrés, lignes de niveau, sous-variétés de .
Courbe algébriqueEn mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Algèbre de type finiEn algèbre commutative, la notion d'algèbre de type fini est une première généralisation des anneaux de polynômes à un nombre fini d'indéterminées. Ces algèbres possèdent de bonnes propriétés relatives à l'anneau de base, et de bonnes propriétés absolues lorsque l'anneau de base est un corps. Les algèbres de type fini sur un corps sont les objets algébriques de base des variétés algébriques. Sur un corps k, attention à ne pas confondre une algèbre de type fini avec une extension de type fini qui n'est jamais de type fini en tant que k-algèbre sauf si c'est une extension finie.
Groupe abélien de type finiEn mathématiques, un groupe abélien de type fini est un groupe abélien qui possède une partie génératrice finie. Autrement dit : c'est un module de type fini sur l'anneau Z des entiers relatifs. Par conséquent, les produits finis, les quotients, mais aussi les sous-groupes des groupes abéliens de type fini sont eux-mêmes de type fini. Un théorème de structure des groupes abéliens de type fini permet d'expliciter la liste complète de ces groupes à isomorphisme près ; il montre notamment que tout groupe abélien de type fini est un produit fini de groupes monogènes.
Morphisme de type finiEn géométrie algébrique, un morphisme de type fini peut être pensé comme une famille de variétés algébriques paramétrée par un schéma de base. C'est un des types de morphismes les plus couramment étudiés. Soit un morphisme de schémas. On dit que est de type fini si pour tout ouvert affine de , est quasi-compact (i.e. réunion finie d'ouverts affines) et que pour tout ouvert affine contenu dans , le morphisme canonique est de type fini.
Théorème des facteurs invariantsEn mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants non inversibles sont des obstructions à l'inversibilité des matrices qui n'apparaissent pas dans la théorie des espaces vectoriels. Leur calcul a de nombreuses applications : par exemple trouver la classe d'isomorphie d'un groupe abélien de type fini à partir d'une présentation de celui-ci. Dans un cadre précis, le théorème des facteurs invariants se particularise en théorèmes de réduction d'endomorphisme.
Plus grand commun diviseurEn arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10. Cette notion s'étend aux entiers relatifs grâce aux propriétés de la division euclidienne. Elle se généralise aussi aux anneaux euclidiens comme l'anneau des polynômes sur un corps commutatif. La notion de PGCD peut être définie dans tout anneau commutatif.
Finitely generated groupIn algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination (under the group operation) of finitely many elements of S and of inverses of such elements. By definition, every finite group is finitely generated, since S can be taken to be G itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated.