Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi de probabilité d'entropie maximaleEn statistique et en théorie de l'information, une loi de probabilité d'entropie maximale a une entropie qui est au moins aussi grande que celle de tous les autres membres d'une classe spécifiée de lois de probabilité. Selon le principe d'entropie maximale, si rien n'est connu sur une loi , sauf qu'elle appartient à une certaine classe (généralement définie en termes de propriétés ou de mesures spécifiées), alors la loi avec la plus grande entropie doit être choisie comme la moins informative par défaut.
Inflation cosmiquevignette |upright=1.5 |Inflation cosmique (en beige), avant seconde. L'inflation cosmique est un modèle cosmologique s'insérant dans le paradigme du Big Bang lors duquel une région de l'Univers comprenant l'Univers observable a connu une phase d'expansion très rapide qui lui aurait permis de grossir d'un facteur considérable : au moins 10 en un temps extrêmement bref, compris entre 10 et 10 secondes après le Big Bang. Ce modèle cosmologique offre une solution à la fois au problème de l'horizon et au problème de la platitude.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Décalage d'EinsteinLe décalage vers le rouge gravitationnel, dit décalage d'Einstein, est un effet prédit par les équations d'Albert Einstein de la relativité générale. D'après cette théorie, une fréquence produite dans un champ de gravitation est vue décalée vers le rouge (c'est-à-dire diminuée) quand elle est observée depuis un lieu où la gravitation est moindre. La cause de ce décalage des fréquences est dans la dilatation du temps créée par la gravitation. Mais une autre explication peut être fournie par la contraction des longueurs due à la gravitation, appliquée aux longueurs d'onde.
Décalage vers le rougeLe décalage vers le rouge (en en anglais) est un phénomène astronomique de décalage vers les grandes longueurs d'onde des raies spectrales et de l'ensemble du spectre — ce qui se traduit par un décalage vers le rouge pour le spectre visible — observé parmi les objets astronomiques lointains. À la suite des travaux de Lemaître et Hubble c'est un phénomène bien documenté, considéré comme la preuve initiale de l'expansion de l'Univers et du modèle cosmologique avec le Big Bang.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).
Lentille gravitationnelleEn astrophysique, une lentille gravitationnelle, ou mirage gravitationnel, est produit par la présence d'un corps céleste très massif (tel, par exemple, un amas de galaxies) se situant entre un observateur et une source « lumineuse » lointaine. La lentille gravitationnelle, imprimant un fort champ gravitationnel autour d'elle, a comme effet de faire dévier les rayons lumineux qui passent près d'elle, déformant ainsi les images que reçoit un observateur placé sur la ligne de visée.