Particle decayIn particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state) must each be less massive than the original, although the total invariant mass of the system must be conserved. A particle is unstable if there is at least one allowed final state that it can decay into. Unstable particles will often have multiple ways of decaying, each with its own associated probability.
Méson vecteurUn méson vecteur est une particule hadronique composée de deux quarks avec des spins parallèles. Le méson vecteur est de spin 1. Le Méson J/Ψ est un méson vecteur. Alexandru Proca (1897 - 1955), ses équations ont prévu l'existence des mésons vectoriels (travail en physique théorique de 1936 à 1941). Ce type de méson n'a été observé qu'après 1960. Simulations informatiques: Animation sur les moments cinétiques orbital et de spin. Leur lien avec les lois de symétrie en physique des particules élémentaires. U
Méson DThe D mesons are the lightest particle containing charm quarks. They are often studied to gain knowledge on the weak interaction. The strange D mesons (Ds) were called "F mesons" prior to 1986. The D mesons were discovered in 1976 by the Mark I detector at the Stanford Linear Accelerator Center. Since the D mesons are the lightest mesons containing a single charm quark (or antiquark), they must change the charm (anti)quark into an (anti)quark of another type to decay.
Pentaquarkvignette|Schéma d'un pentaquark générique : quatre quarks et un antiquark (en jaune). Un pentaquark est une particule subatomique composée de cinq quarks qui a été prévue par les théoriciens en 1997. La recherche des pentaquarks (et des tétraquarks) est devenue un sujet d’étude à part entière en physique expérimentale, et plusieurs pentaquarks ont été produits au LHC, de type cqqq. L'existence des pentaquarks fut prédite initialement par Maxim Polyakov, et Victor Petrov de l' en 1997 ; mais leur théorie fut accueillie avec scepticisme.
Quadri-momentEn relativité restreinte, le quadri-moment (ou quadrivecteur impulsion ou quadri-impulsion ou quadrivecteur impulsion-énergie ou quadrivecteur énergie-impulsion) est une généralisation du moment linéaire tridimensionnel de la physique classique sous la forme d'un quadrivecteur de l'espace de Minkowski, espace-temps à 4 dimensions de la relativité restreinte. Le quadri-moment d'une particule combine le moment tridimensionnel et d'énergie : Comme tout quadrivecteur, il est covariant, c'est-à-dire que les changements de ses coordonnées lors d'un changement de référentiel inertiel se calculent à l'aide des transformations de Lorentz.
Référentiel barycentriqueEn physique, le référentiel barycentrique, appelé aussi référentiel du centre de masse, est un référentiel en translation (par rapport à un référentiel galiléen de référence) dans lequel le centre d'inertie du système étudié est immobile. La translation du référentiel barycentrique ne signifie pas que c'est une translation rectiligne. Par exemple, une cabine de grande roue de fête foraine, quand elle tourne, est en mouvement de translation circulaire et elle se comporte comme le référentiel barycentrique de la Lune qui, elle, est en mouvement de rotation dans le référentiel géocentrique.
Masse au reposLa masse au repos, masse propre ou encore masse invariante (par opposition à la masse relative ou masse relativiste, dépendante du référentiel), usuellement notée , est la masse inerte d'un corps dans un référentiel inertiel où il est au repos, ou d'un système physique dans un référentiel inertiel où son centre d'inertie est au repos. Elle est principalement utilisée en relativité restreinte et en physique des particules.
Mass in special relativityThe word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).
Quantité de mouvementEn physique, la quantité de mouvement est le produit de la masse par le vecteur vitesse d'un corps matériel supposé ponctuel. Il s'agit donc d'une grandeur vectorielle, définie par , qui dépend du référentiel d'étude. Par additivité, il est possible de définir la quantité de mouvement d'un corps non ponctuel (ou système matériel), dont il est possible de démontrer qu'elle est égale à la quantité de mouvement de son centre d'inertie affecté de la masse totale du système, soit (C étant le centre d'inertie du système).
E=mc2L'équation (lire « E égale m c carré » ou « E égale m c deux ») est une formule d'équivalence entre la masse et l'énergie, rendue célèbre par Albert Einstein dans une publication en 1905 sur la relativité restreinte. Cette relation signifie qu'une particule de masse m isolée et au repos dans un référentiel possède, du fait de cette masse, une énergie E appelée énergie de masse, dont la valeur est donnée par le produit de m par le carré de la vitesse de la lumière dans le vide (c).