Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Mathématiques computationnellesvignette| Une interprétation en noir et blanc de la tablette YBC 7289 de la Yale Babylonian Collection (vers 1800–1600 avant notre ère), montrant une approximation babylonienne de la racine carrée de 2 (1 24 51 10 w : sexagésimal) dans le contexte du théorème de Pythagore pour un triangle isocèle. La tablette donne également un exemple où un côté du carré est 30 et la diagonale résultante est 42 25 35 soit 42,4263888.
Langage formelUn langage formel, en mathématiques, en informatique et en linguistique, est un ensemble de mots. L'alphabet d'un langage formel est l'ensemble des symboles, lettres ou lexèmes qui servent à construire les mots du langage ; souvent, on suppose que cet alphabet est fini. La théorie des langages formels a pour objectif de décrire les langages formels. Les mots sont des suites d'éléments de cet alphabet ; les mots qui appartiennent à un langage formel particulier sont parfois appelés mots bien formés ou formules bien formées.
Connection gameA connection game is a type of abstract strategy game in which players attempt to complete a specific type of connection with their pieces. This could involve forming a path between two or more endpoints, completing a closed loop, or connecting all of one's pieces so they are adjacent to each other. Connection games typically have simple rules, but complex strategies. They have minimal components and may be played as board games, computer games, or even paper-and-pencil games.
Méthode formelle (informatique)En informatique, les méthodes formelles sont des techniques permettant de raisonner rigoureusement, à l'aide de logique mathématique, sur un programme informatique ou du matériel électronique numérique, afin de démontrer leur validité par rapport à une certaine spécification. Elles reposent sur les sémantiques des programmes, c'est-à-dire sur des descriptions mathématiques formelles du sens d'un programme donné par son code source (ou, parfois, son code objet).
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Jeu de sociétévignette|Jeu de dominos. Le jeu de société est un jeu qui se pratique à plusieurs. Un jeu est une activité de loisirs soumise à des règles qui définissent les moyens, les contraintes et les objectifs à atteindre au cours de la partie. La finalité de cette activité est le divertissement que les participants en retirent en essayant de remporter la partie. On différencie généralement les jeux de société des jeux vidéo ainsi que des activités essentiellement physiques, qu’on appelle plus volontiers « sports », même si la limite entre les sports et les jeux de société est difficile à déterminer précisément.
Ensembles disjointsvignette|Trois ensembles disjoints En mathématiques, deux ensembles sont dits disjoints s'ils n'ont pas d'éléments en commun. Par exemple, et sont deux ensembles disjoints. De manière formelle, deux ensembles A et B sont disjoints si leur intersection est l'ensemble vide, c'est-à-dire si (Dans le cas contraire, on dit que A et B « se rencontrent ».) Cette définition s'étend à une famille d'ensembles. Les ensembles d'une famille sont dits disjoints deux à deux ou mutuellement disjoints si deux ensembles quelconques de cette famille sont disjoints.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Computational engineeringComputational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models or CEM. At this time, various different approaches are summarized under the term Computational Engineering, including using computational geometry and virtual design for engineering tasks, often coupled with a simulation-driven approach In Computational Engineering, algorithms solve mathematical and logical models that describe engineering challenges, sometimes coupled with some aspect of AI, specifically Reinforcement Learning.