Fraction continue de GaussEn analyse complexe, une fraction continue de Gauss est un cas particulier de fraction continue dérivé des fonctions hypergéométriques. Ce fut l'un des premiers exemples de fractions continues analytiques. Elles permettent de représenter des fonctions élémentaires importantes, ainsi que des fonctions spéciales transcendantes plus compliquées. Lambert a publié quelques exemples de fractions continues généralisées de cette forme en 1768, démontrant entre autres l'irrationalité de π ( § « Applications à F » ci-dessous).
ATLAS (détecteur)thumb|Le détecteur ATLAS vers la fin février 2006 ATLAS (acronyme de A Toroidal LHC ApparatuS : - dispositif instrumental toroïdal pour le LHC - qui utilise un électro-aimant toroïdal où le champ magnétique se referme sur lui-même dans l'air, sans l'aide d'un retour de fer) est l'une des du collisionneur LHC au CERN. Il s'agit d'un détecteur de particules semblable à CMS, mais de plus grande taille et de conception différente. Il a pour tâche de détecter le boson de Higgs, des particules supersymétriques (SUSY).
Pivignette|Si le diamètre du cercle est 1, sa circonférence est π. π (pi), appelé parfois constante d’Archimède, est un nombre représenté par la lettre grecque du même nom en minuscule (π). C’est le rapport constant de la circonférence d’un cercle à son diamètre dans un plan euclidien. On peut également le définir comme le rapport de l'aire d'un disque au carré de son rayon. Sa valeur approchée par défaut à moins de 0,5×10 près est en écriture décimale.
Bar gayvignette|Cancan (Bruxelles, Belgique) Un bar gay est un bar dont la clientèle est exclusivement, ou est de manière prépondérante, gay ou lesbienne, et qui est souvent l'épicentre de la culture gay. Il ne faut cependant pas les confondre avec les bars gay-friendly qui sont simplement des lieux où l'homosexualité est admise sans concession.
Formule de fraction continue d'EulerEn théorie analytique des nombres, la formule de fraction continue d'Euler est une identité reliant les séries aux fractions continues généralisées, publiée par Leonhard Euler en 1748 et utile dans l'étude du problème de convergence général pour les fractions continues à coefficients complexes. Euler a établi une identité dont la transcription est, en notation de Pringsheim : cette égalité signifiant seulement que les sommes partielles de la série de gauche sont égales aux réduites de la fraction continue de droite, autrement dit : Il trouve simplement cette formule par une analyse rétrograde des relations fondamentales sur les réduites.
Diagramme ternairevignette|Diagramme d'inflammabilité du méthane. Zone en orange : compositions inflammables. Ligne en bleu : mélanges méthane-air. Ligne en rouge : oxygène et méthane dans les proportions stœchiométriques de la combustion. Ligne en brun : 12 % d'oxygène. vignette|Couleur des alliages Ag–Au–Cu, en fonction de leur composition. Un diagramme ternaire est la représentation graphique de triplets de données numériques par les points d'un triangle. Chaque triplet (a, b, c) constitue les coordonnées barycentriques du point correspondant.
Représentation graphiqueUn certain nombre de phénomènes sont modélisés sous forme de données qualitatives et surtout quantitatives, et ce dans de nombreux domaines : mathématiques, physique, sociologie, géographie, géologie, économie... Lorsque ces données sont complexes, elles peuvent être regroupées sous la forme d'une représentation schématique qui présente une vision simplifiée et structurée de ces éléments, parfois accompagnée d'illustrations (dessins réalistes ou stylisés).
Approximation de πvignette|upright=2|Graphique montrant l'évolution historique de la précision record des approximations numériques de π, mesurée en décimales (représentée sur une échelle logarithmique). Dans l'histoire des mathématiques, les approximations de la constante π ont atteint une précision de 0,04 % de la valeur réelle avant le début de notre ère (Archimède). Au , des mathématiciens chinois les ont améliorées jusqu'à sept décimales. De grandes avancées supplémentaires n'ont été réalisées qu'à partir du (Al-Kashi).
Boson de Higgsthumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.