Rayon de convergenceLe rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
Convergence absolueEn mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach. Dans tous ces contextes, cette condition est suffisante pour assurer la convergence de la série elle-même. Par analogie, l'intégrale d'une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
Test de convergenceEn mathématiques, les tests de convergence sont des méthodes de test de la convergence, de la convergence absolue ou de la divergence d'une série . Appliqués aux séries entières, ils donnent des moyens de déterminer leur rayon de convergence. Pour que la série converge, il est nécessaire que . Par conséquent, si cette limite est indéfinie ou non nulle, alors la série diverge. La condition n'est pas suffisante, et, si la limite des termes est nulle, on ne peut rien conclure. Toute série absolument convergente converge.
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Integer latticeIn mathematics, the n-dimensional integer lattice (or cubic lattice), denoted \mathbb{Z}^n, is the lattice in the Euclidean space \mathbb{R}^n whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice, or grid lattice. \mathbb{Z}^n is the simplest example of a root lattice. The integer lattice is an odd unimodular lattice. The automorphism group (or group of congruences) of the integer lattice consists of all permutations and sign changes of the coordinates, and is of order 2n n!.
E8 latticeIn mathematics, the E_8 lattice is a special lattice in R^8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E_8 root system. The norm of the E_8 lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H.
Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Unimodular latticeIn geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E8 lattice and the Leech lattice are two famous examples. A lattice is a free abelian group of finite rank with a symmetric bilinear form (·, ·). The lattice is integral if (·,·) takes integer values. The dimension of a lattice is the same as its rank (as a Z-module).
Réseau réciproqueEn cristallographie, le réseau réciproque d'un réseau de Bravais est l'ensemble des vecteurs tels que : pour tous les vecteurs position du réseau de Bravais. Ce réseau réciproque est lui-même un réseau de Bravais, et son réseau réciproque est le réseau de Bravais de départ. Un cristal peut se décrire comme un réseau aux nœuds duquel se trouvent des motifs : atome, ion, molécule. Si l'on appelle les vecteurs définissant la maille élémentaire, ces vecteurs définissent une base de l'espace.
Integer triangleAn integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles. Sometimes other definitions of the term rational triangle are used: Carmichael (1914) and Dickson (1920) use the term to mean a Heronian triangle (a triangle with integral or rational side lengths and area);cite book |last=Carmichael |first=R.